-
Notifications
You must be signed in to change notification settings - Fork 39
/
initialise.py
43 lines (34 loc) · 1.82 KB
/
initialise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from fastai.vision import *
from pathlib import Path
# Data Augmentations
def xtra_tfms(base_size = 75*5):
box_dim = int(base_size/4)
cutout_ = partial(cutout, p = .8, n_holes = (1,1), length = (box_dim, box_dim))
jitter_ = partial(jitter, p = 0.5, magnitude = (0.005, 0.01))
skew_ = partial(skew, p = 0.5, direction = (0, 7), magnitude = 0.2)
squish_ = partial(squish, p = 0.5, row_pct = 0.25, col_pct = 0.25)
tilt_ = partial(tilt, p = 0.5, direction = (0, 3))
perp_warp_ = partial(perspective_warp, p = 0.5, magnitude = (-0.2, 0.2))
crop_pad_ = partial(crop_pad, p = 0.5, padding_mode = 'border', row_pct = 0.1, col_pct = 0.1)
rgb_randomize_ = partial(rgb_randomize, thresh=0.05)
xtra_tfms = [jitter_(), skew_(), squish_(), perp_warp_(),
tilt_(), cutout_(), crop_pad_()]
return xtra_tfms
def get_tfms(): return get_transforms(do_flip = True,
flip_vert = False,
max_zoom = 1.,
max_lighting = 0.4,
max_warp = 0.3,
p_affine = 0.85,
p_lighting = 0.85,
xtra_tfms = xtra_tfms())
def get_model_data(path):
path = Path(path)
data = ImageDataBunch.from_folder(path, 'train', 'valid', size = (375, 666), ds_tfms = get_tfms(), bs=1,
resize_method = ResizeMethod.SQUISH,
num_workers = 0
).normalize(imagenet_stats)
learn = cnn_learner(data, models.resnet50, metrics = [accuracy], pretrained=True)
learn = learn.to_fp16()
learn.load(path/'models'/'shot-type-classifier');
return learn, data