|
| 1 | +--- |
| 2 | +title: "antaresViz" |
| 3 | +author: "Jalal-Edine ZAWAM" |
| 4 | +date: "20 juillet 2018" |
| 5 | +output: |
| 6 | + html_document: |
| 7 | + number_sections: yes |
| 8 | + toc: yes |
| 9 | +--- |
| 10 | + |
| 11 | +```{r param, echo=FALSE} |
| 12 | +
|
| 13 | +#param of all examples |
| 14 | +pathStudy <- "E:\\ANTARES\\Exemple_antares\\2_exemple_etudes_importantes\\TYNDP\\ST2030\\ST2030" |
| 15 | +
|
| 16 | +pathStudyL <- "E:\\ANTARES\\Exemple_antares\\3_petit_exemple\\PackagesR\\Test_packages_R_602" |
| 17 | +
|
| 18 | +``` |
| 19 | + |
| 20 | + |
| 21 | +# Introduction |
| 22 | + |
| 23 | +`antaresViz` is on [CRAN](https://cran.r-project.org/web/packages/antaresViz/index.html). This package can help you to visualize results from the open source software ANTARES, more information about ANTARES [here](https://github.com/AntaresSimulatorTeam/Antares_Simulator). |
| 24 | + |
| 25 | +This documentation will present some new examples for `antaresViz` and also how to use R, data.table and RStudio. |
| 26 | + |
| 27 | +# How to represent the generation mix for each country? |
| 28 | + |
| 29 | +Here we have to use the `prodStack` function. |
| 30 | + |
| 31 | +```{r prodStackHelp, eval=FALSE} |
| 32 | +#you can visualize prodStack help with this command on RStudio |
| 33 | +#you will find some examples |
| 34 | +??prodStack |
| 35 | +
|
| 36 | +``` |
| 37 | + |
| 38 | +## Generation mix for hourly data |
| 39 | + |
| 40 | +```{r importHourlyData, echo=TRUE} |
| 41 | +suppressMessages(library(antaresViz)) |
| 42 | +#pathStudy : path to my study |
| 43 | +suppressWarnings(opts <- setSimulationPath(pathStudy,-1)) |
| 44 | +myData <- suppressWarnings(readAntares(areas = "fr", showProgress = FALSE)) |
| 45 | +
|
| 46 | +prodStack(myData, interactive = FALSE, areas = "fr", dateRange = c("2018-07-01", "2018-07-05")) |
| 47 | +
|
| 48 | +#prodStack can also be an interactive application, a user can set this behaviour in two ways: |
| 49 | +#1. do not set the "interactive" parameter (by default, interactive is set to TRUE) |
| 50 | +#2. set "interactive" parameter to TRUE |
| 51 | +
|
| 52 | +#run it in your console |
| 53 | +#prodStack(myData, areas = "fr", dateRange = c("2018-07-01", "2018-07-05")) |
| 54 | +
|
| 55 | +#run it in your console |
| 56 | +#prodStack(myData, interactive = TRUE, areas = "fr", dateRange = c("2018-07-01", "2018-07-05")) |
| 57 | +
|
| 58 | +``` |
| 59 | + |
| 60 | + |
| 61 | +One can also include `prodStack` in a shiny app like for the adequacy French report |
| 62 | +[bpnumerique](http://bpnumerique.rte-france.com/), tab "Analyse detaillee". |
| 63 | + |
| 64 | +## Generation mix for daily, weekly or monthly data |
| 65 | +```{r importDWMData, echo=TRUE} |
| 66 | +suppressMessages(library(antaresViz)) |
| 67 | +#pathStudy : path to my study |
| 68 | +suppressWarnings(opts <- setSimulationPath(pathStudy,-1)) |
| 69 | +myDataD <- suppressWarnings(readAntares(areas = "fr", showProgress = FALSE, timeStep = "daily")) |
| 70 | +myDataW <- suppressWarnings(readAntares(areas = "fr", showProgress = FALSE, timeStep = "weekly")) |
| 71 | +myDataM <- suppressWarnings(readAntares(areas = "fr", showProgress = FALSE, timeStep = "monthly")) |
| 72 | +
|
| 73 | +dataRangeEx <- c("2018-06-25", "2018-07-05") |
| 74 | +prodStack(myDataD, interactive = FALSE, areas = "fr", dateRange = dataRangeEx) |
| 75 | +prodStack(myDataW, interactive = FALSE, areas = "fr", dateRange = dataRangeEx) |
| 76 | +prodStack(myDataM, interactive = FALSE, areas = "fr", dateRange = c("2018-05-01", "2018-09-30")) |
| 77 | +
|
| 78 | +#try to plot weekly data for one week in your console |
| 79 | +#try to plot monthly data for one month in your console |
| 80 | +#prodStack(myDataW, interactive = FALSE, areas = "fr", dateRange = c("2018-07-01", "2018-07-05")) |
| 81 | +#prodStack(myDataM, interactive = FALSE, areas = "fr", dateRange = c("2018-05-01", "2018-05-30")) |
| 82 | +
|
| 83 | +``` |
| 84 | + |
| 85 | +## Generation mix for annual data |
| 86 | +```{r importAnnualData, echo=TRUE} |
| 87 | +suppressMessages(library(antaresViz)) |
| 88 | +#pathStudy : path to my study |
| 89 | +suppressWarnings(opts <- setSimulationPath(pathStudy,-1)) |
| 90 | +myDataA <- suppressWarnings(readAntares(areas = "fr", showProgress = FALSE, timeStep = "annual")) |
| 91 | +
|
| 92 | +prodStack(myDataA, interactive = FALSE, areas = "fr") |
| 93 | +``` |
| 94 | + |
| 95 | +# How to represent LOLD and ENS for each country? |
| 96 | + |
| 97 | +## With plot it's easy |
| 98 | +`plot` help you to visualize a time series and can also help you to visualize LOLE and ENS. |
| 99 | + |
| 100 | +```{r plotLOLE, echo=TRUE} |
| 101 | +suppressMessages(library(antaresViz)) |
| 102 | +#pathStudy : path to my study |
| 103 | +suppressWarnings(opts <- setSimulationPath(pathStudy,-1)) |
| 104 | +#get only some areas |
| 105 | +myAreas <- c("fr", "fi", "be") |
| 106 | +myDataH <- suppressWarnings(readAntares(areas = myAreas, showProgress = FALSE)) |
| 107 | +
|
| 108 | +#one country and one variable |
| 109 | +plot(myDataH, interactive = FALSE, elements = "fr", variable = "UNSP. ENRG") |
| 110 | +#one country and several variables |
| 111 | +plot(myDataH, interactive = FALSE, elements = "fr", variable = c("UNSP. ENRG", "LOLD", "LOLP")) |
| 112 | +#several countries and one variable |
| 113 | +plot(myDataH, interactive = FALSE, elements = c("fr", "fi", "be"), variable = c("UNSP. ENRG")) |
| 114 | +#several countries and several variables |
| 115 | +plot(myDataH, interactive = FALSE, elements = c("fr", "fi", "be"), variable = c("UNSP. ENRG", "LOLD", "LOLP")) |
| 116 | +#one country and several variables but with monotone |
| 117 | +plot(myDataH, interactive = FALSE, elements = "be", variable = c("WIND", "SOLAR"), type = "monotone") |
| 118 | +
|
| 119 | +``` |
| 120 | + |
| 121 | +## Other possibilities |
| 122 | + |
| 123 | +`plot` can be used with `type` "barplot", "density", "cdf" or "heatmap" to visualize some variables like "LOLD". |
| 124 | + |
| 125 | +`prodStack` can also be used to visualize a lack of production. |
| 126 | + |
| 127 | + |
| 128 | +```{r prodStackLOLE, echo=TRUE} |
| 129 | +suppressMessages(library(antaresViz)) |
| 130 | +#pathStudy : path to my study |
| 131 | +suppressWarnings(opts <- setSimulationPath(pathStudy,-1)) |
| 132 | +#get only some areas |
| 133 | +myAreas <- c("fr", "fi", "be") |
| 134 | +myDataH <- suppressWarnings(readAntares(areas = myAreas, showProgress = FALSE)) |
| 135 | +
|
| 136 | +dateWithENS <- myDataH[LOLD >0 , time][1] |
| 137 | +dateWithENS |
| 138 | +firstDate <- dateWithENS - 60*60*24 |
| 139 | +lastDate <- dateWithENS + 60*60*24 |
| 140 | +prodStack(myDataH, interactive = FALSE, areas = "fr", dateRange = c(firstDate, lastDate)) |
| 141 | +
|
| 142 | +``` |
| 143 | + |
| 144 | +## For several simulations |
| 145 | +```{r plotLoleSims, echo=TRUE} |
| 146 | +suppressMessages(library(antaresViz)) |
| 147 | +#pathStudy : path to my study |
| 148 | +suppressWarnings(opts <- setSimulationPath(pathStudy,-1)) |
| 149 | +#only some variables |
| 150 | +varToGet <- c("UNSP. ENRG", "LOLD", "LOLP") |
| 151 | +myDataS1 <- suppressWarnings(readAntares(areas = "fr", showProgress = FALSE, select = varToGet)) |
| 152 | +suppressWarnings(opts <- setSimulationPath(pathStudy,-2)) |
| 153 | +myDataS2 <- suppressWarnings(readAntares(areas = "fr", showProgress = FALSE, select = varToGet)) |
| 154 | +
|
| 155 | +#one simulation and one variable |
| 156 | +plot(myDataS1, interactive = FALSE, elements = "fr", variable = "UNSP. ENRG") |
| 157 | +plot(myDataS2, interactive = FALSE, elements = "fr", variable = "UNSP. ENRG") |
| 158 | +
|
| 159 | +#plot in the same graph the two variables |
| 160 | +myDataS1[, unspEnrgS1 := `UNSP. ENRG`] |
| 161 | +myDataS1[, unspEnrgS2 := myDataS2$`UNSP. ENRG`] |
| 162 | +plot(myDataS1, interactive = FALSE, elements = "fr", variable = c("unspEnrgS1", "unspEnrgS2")) |
| 163 | +
|
| 164 | +``` |
0 commit comments