-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathtrain_cnf.py
444 lines (380 loc) · 17.7 KB
/
train_cnf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import argparse
import os
import time
import numpy as np
import torch
import torch.optim as optim
import torchvision.datasets as dset
import torchvision.transforms as tforms
from torchvision.utils import save_image
import lib.layers as layers
import lib.utils as utils
import lib.odenvp as odenvp
import lib.multiscale_parallel as multiscale_parallel
from train_misc import standard_normal_logprob
from train_misc import set_cnf_options, count_nfe, count_parameters, count_total_time
from train_misc import add_spectral_norm, spectral_norm_power_iteration
from train_misc import create_regularization_fns, get_regularization, append_regularization_to_log
# go fast boi!!
torch.backends.cudnn.benchmark = True
SOLVERS = ["dopri5", "bdf", "rk4", "midpoint", 'adams', 'explicit_adams']
parser = argparse.ArgumentParser("Continuous Normalizing Flow")
parser.add_argument("--data", choices=["mnist", "svhn", "cifar10", 'lsun_church'], type=str, default="mnist")
parser.add_argument("--dims", type=str, default="8,32,32,8")
parser.add_argument("--strides", type=str, default="2,2,1,-2,-2")
parser.add_argument("--num_blocks", type=int, default=1, help='Number of stacked CNFs.')
parser.add_argument("--conv", type=eval, default=True, choices=[True, False])
parser.add_argument(
"--layer_type", type=str, default="ignore",
choices=["ignore", "concat", "concat_v2", "squash", "concatsquash", "concatcoord", "hyper", "blend"]
)
parser.add_argument("--divergence_fn", type=str, default="approximate", choices=["brute_force", "approximate"])
parser.add_argument(
"--nonlinearity", type=str, default="softplus", choices=["tanh", "relu", "softplus", "elu", "swish"]
)
parser.add_argument('--solver', type=str, default='dopri5', choices=SOLVERS)
parser.add_argument('--atol', type=float, default=1e-5)
parser.add_argument('--rtol', type=float, default=1e-5)
parser.add_argument("--step_size", type=float, default=None, help="Optional fixed step size.")
parser.add_argument('--test_solver', type=str, default=None, choices=SOLVERS + [None])
parser.add_argument('--test_atol', type=float, default=None)
parser.add_argument('--test_rtol', type=float, default=None)
parser.add_argument("--imagesize", type=int, default=None)
parser.add_argument("--alpha", type=float, default=1e-6)
parser.add_argument('--time_length', type=float, default=1.0)
parser.add_argument('--train_T', type=eval, default=True)
parser.add_argument("--num_epochs", type=int, default=1000)
parser.add_argument("--batch_size", type=int, default=200)
parser.add_argument(
"--batch_size_schedule", type=str, default="", help="Increases the batchsize at every given epoch, dash separated."
)
parser.add_argument("--test_batch_size", type=int, default=200)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--warmup_iters", type=float, default=1000)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--spectral_norm_niter", type=int, default=10)
parser.add_argument("--add_noise", type=eval, default=True, choices=[True, False])
parser.add_argument("--batch_norm", type=eval, default=False, choices=[True, False])
parser.add_argument('--residual', type=eval, default=False, choices=[True, False])
parser.add_argument('--autoencode', type=eval, default=False, choices=[True, False])
parser.add_argument('--rademacher', type=eval, default=True, choices=[True, False])
parser.add_argument('--spectral_norm', type=eval, default=False, choices=[True, False])
parser.add_argument('--multiscale', type=eval, default=False, choices=[True, False])
parser.add_argument('--parallel', type=eval, default=False, choices=[True, False])
# Regularizations
parser.add_argument('--l1int', type=float, default=None, help="int_t ||f||_1")
parser.add_argument('--l2int', type=float, default=None, help="int_t ||f||_2")
parser.add_argument('--dl2int', type=float, default=None, help="int_t ||f^T df/dt||_2")
parser.add_argument('--JFrobint', type=float, default=None, help="int_t ||df/dx||_F")
parser.add_argument('--JdiagFrobint', type=float, default=None, help="int_t ||df_i/dx_i||_F")
parser.add_argument('--JoffdiagFrobint', type=float, default=None, help="int_t ||df/dx - df_i/dx_i||_F")
parser.add_argument("--time_penalty", type=float, default=0, help="Regularization on the end_time.")
parser.add_argument(
"--max_grad_norm", type=float, default=1e10,
help="Max norm of graidents (default is just stupidly high to avoid any clipping)"
)
parser.add_argument("--begin_epoch", type=int, default=1)
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--save", type=str, default="experiments/cnf")
parser.add_argument("--val_freq", type=int, default=1)
parser.add_argument("--log_freq", type=int, default=10)
args = parser.parse_args()
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
if args.layer_type == "blend":
logger.info("!! Setting time_length from None to 1.0 due to use of Blend layers.")
args.time_length = 1.0
logger.info(args)
def add_noise(x):
"""
[0, 1] -> [0, 255] -> add noise -> [0, 1]
"""
if args.add_noise:
noise = x.new().resize_as_(x).uniform_()
x = x * 255 + noise
x = x / 256
return x
def update_lr(optimizer, itr):
iter_frac = min(float(itr + 1) / max(args.warmup_iters, 1), 1.0)
lr = args.lr * iter_frac
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def get_train_loader(train_set, epoch):
if args.batch_size_schedule != "":
epochs = [0] + list(map(int, args.batch_size_schedule.split("-")))
n_passed = sum(np.array(epochs) <= epoch)
current_batch_size = int(args.batch_size * n_passed)
else:
current_batch_size = args.batch_size
train_loader = torch.utils.data.DataLoader(
dataset=train_set, batch_size=current_batch_size, shuffle=True, drop_last=True, pin_memory=True
)
logger.info("===> Using batch size {}. Total {} iterations/epoch.".format(current_batch_size, len(train_loader)))
return train_loader
def get_dataset(args):
trans = lambda im_size: tforms.Compose([tforms.Resize(im_size), tforms.ToTensor(), add_noise])
if args.data == "mnist":
im_dim = 1
im_size = 28 if args.imagesize is None else args.imagesize
train_set = dset.MNIST(root="./data", train=True, transform=trans(im_size), download=True)
test_set = dset.MNIST(root="./data", train=False, transform=trans(im_size), download=True)
elif args.data == "svhn":
im_dim = 3
im_size = 32 if args.imagesize is None else args.imagesize
train_set = dset.SVHN(root="./data", split="train", transform=trans(im_size), download=True)
test_set = dset.SVHN(root="./data", split="test", transform=trans(im_size), download=True)
elif args.data == "cifar10":
im_dim = 3
im_size = 32 if args.imagesize is None else args.imagesize
train_set = dset.CIFAR10(
root="./data", train=True, transform=tforms.Compose([
tforms.Resize(im_size),
tforms.RandomHorizontalFlip(),
tforms.ToTensor(),
add_noise,
]), download=True
)
test_set = dset.CIFAR10(root="./data", train=False, transform=trans(im_size), download=True)
elif args.data == 'celeba':
im_dim = 3
im_size = 64 if args.imagesize is None else args.imagesize
train_set = dset.CelebA(
train=True, transform=tforms.Compose([
tforms.ToPILImage(),
tforms.Resize(im_size),
tforms.RandomHorizontalFlip(),
tforms.ToTensor(),
add_noise,
])
)
test_set = dset.CelebA(
train=False, transform=tforms.Compose([
tforms.ToPILImage(),
tforms.Resize(im_size),
tforms.ToTensor(),
add_noise,
])
)
elif args.data == 'lsun_church':
im_dim = 3
im_size = 64 if args.imagesize is None else args.imagesize
train_set = dset.LSUN(
'data', ['church_outdoor_train'], transform=tforms.Compose([
tforms.Resize(96),
tforms.RandomCrop(64),
tforms.Resize(im_size),
tforms.ToTensor(),
add_noise,
])
)
test_set = dset.LSUN(
'data', ['church_outdoor_val'], transform=tforms.Compose([
tforms.Resize(96),
tforms.RandomCrop(64),
tforms.Resize(im_size),
tforms.ToTensor(),
add_noise,
])
)
data_shape = (im_dim, im_size, im_size)
if not args.conv:
data_shape = (im_dim * im_size * im_size,)
test_loader = torch.utils.data.DataLoader(
dataset=test_set, batch_size=args.test_batch_size, shuffle=False, drop_last=True
)
return train_set, test_loader, data_shape
def compute_bits_per_dim(x, model):
zero = torch.zeros(x.shape[0], 1).to(x)
# Don't use data parallelize if batch size is small.
# if x.shape[0] < 200:
# model = model.module
z, delta_logp = model(x, zero) # run model forward
logpz = standard_normal_logprob(z).view(z.shape[0], -1).sum(1, keepdim=True) # logp(z)
logpx = logpz - delta_logp
logpx_per_dim = torch.sum(logpx) / x.nelement() # averaged over batches
bits_per_dim = -(logpx_per_dim - np.log(256)) / np.log(2)
return bits_per_dim
def create_model(args, data_shape, regularization_fns):
hidden_dims = tuple(map(int, args.dims.split(",")))
strides = tuple(map(int, args.strides.split(",")))
if args.multiscale:
model = odenvp.ODENVP(
(args.batch_size, *data_shape),
n_blocks=args.num_blocks,
intermediate_dims=hidden_dims,
nonlinearity=args.nonlinearity,
alpha=args.alpha,
cnf_kwargs={"T": args.time_length, "train_T": args.train_T, "regularization_fns": regularization_fns},
)
elif args.parallel:
model = multiscale_parallel.MultiscaleParallelCNF(
(args.batch_size, *data_shape),
n_blocks=args.num_blocks,
intermediate_dims=hidden_dims,
alpha=args.alpha,
time_length=args.time_length,
)
else:
if args.autoencode:
def build_cnf():
autoencoder_diffeq = layers.AutoencoderDiffEqNet(
hidden_dims=hidden_dims,
input_shape=data_shape,
strides=strides,
conv=args.conv,
layer_type=args.layer_type,
nonlinearity=args.nonlinearity,
)
odefunc = layers.AutoencoderODEfunc(
autoencoder_diffeq=autoencoder_diffeq,
divergence_fn=args.divergence_fn,
residual=args.residual,
rademacher=args.rademacher,
)
cnf = layers.CNF(
odefunc=odefunc,
T=args.time_length,
regularization_fns=regularization_fns,
solver=args.solver,
)
return cnf
else:
def build_cnf():
diffeq = layers.ODEnet(
hidden_dims=hidden_dims,
input_shape=data_shape,
strides=strides,
conv=args.conv,
layer_type=args.layer_type,
nonlinearity=args.nonlinearity,
)
odefunc = layers.ODEfunc(
diffeq=diffeq,
divergence_fn=args.divergence_fn,
residual=args.residual,
rademacher=args.rademacher,
)
cnf = layers.CNF(
odefunc=odefunc,
T=args.time_length,
train_T=args.train_T,
regularization_fns=regularization_fns,
solver=args.solver,
)
return cnf
chain = [layers.LogitTransform(alpha=args.alpha)] if args.alpha > 0 else [layers.ZeroMeanTransform()]
chain = chain + [build_cnf() for _ in range(args.num_blocks)]
if args.batch_norm:
chain.append(layers.MovingBatchNorm2d(data_shape[0]))
model = layers.SequentialFlow(chain)
return model
if __name__ == "__main__":
# get deivce
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cvt = lambda x: x.type(torch.float32).to(device, non_blocking=True)
# load dataset
train_set, test_loader, data_shape = get_dataset(args)
# build model
regularization_fns, regularization_coeffs = create_regularization_fns(args)
model = create_model(args, data_shape, regularization_fns)
if args.spectral_norm: add_spectral_norm(model, logger)
set_cnf_options(args, model)
logger.info(model)
logger.info("Number of trainable parameters: {}".format(count_parameters(model)))
# optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# restore parameters
if args.resume is not None:
checkpt = torch.load(args.resume, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpt["state_dict"])
if "optim_state_dict" in checkpt.keys():
optimizer.load_state_dict(checkpt["optim_state_dict"])
# Manually move optimizer state to device.
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = cvt(v)
if torch.cuda.is_available():
model = torch.nn.DataParallel(model).cuda()
# For visualization.
fixed_z = cvt(torch.randn(100, *data_shape))
time_meter = utils.RunningAverageMeter(0.97)
loss_meter = utils.RunningAverageMeter(0.97)
steps_meter = utils.RunningAverageMeter(0.97)
grad_meter = utils.RunningAverageMeter(0.97)
tt_meter = utils.RunningAverageMeter(0.97)
if args.spectral_norm and not args.resume: spectral_norm_power_iteration(model, 500)
best_loss = float("inf")
itr = 0
for epoch in range(args.begin_epoch, args.num_epochs + 1):
model.train()
train_loader = get_train_loader(train_set, epoch)
for _, (x, y) in enumerate(train_loader):
start = time.time()
update_lr(optimizer, itr)
optimizer.zero_grad()
if not args.conv:
x = x.view(x.shape[0], -1)
# cast data and move to device
x = cvt(x)
# compute loss
loss = compute_bits_per_dim(x, model)
if regularization_coeffs:
reg_states = get_regularization(model, regularization_coeffs)
reg_loss = sum(
reg_state * coeff for reg_state, coeff in zip(reg_states, regularization_coeffs) if coeff != 0
)
loss = loss + reg_loss
total_time = count_total_time(model)
loss = loss + total_time * args.time_penalty
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
if args.spectral_norm: spectral_norm_power_iteration(model, args.spectral_norm_niter)
time_meter.update(time.time() - start)
loss_meter.update(loss.item())
steps_meter.update(count_nfe(model))
grad_meter.update(grad_norm)
tt_meter.update(total_time)
if itr % args.log_freq == 0:
log_message = (
"Iter {:04d} | Time {:.4f}({:.4f}) | Bit/dim {:.4f}({:.4f}) | "
"Steps {:.0f}({:.2f}) | Grad Norm {:.4f}({:.4f}) | Total Time {:.2f}({:.2f})".format(
itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, steps_meter.val,
steps_meter.avg, grad_meter.val, grad_meter.avg, tt_meter.val, tt_meter.avg
)
)
if regularization_coeffs:
log_message = append_regularization_to_log(log_message, regularization_fns, reg_states)
logger.info(log_message)
itr += 1
# compute test loss
model.eval()
if epoch % args.val_freq == 0:
with torch.no_grad():
start = time.time()
logger.info("validating...")
losses = []
for (x, y) in test_loader:
if not args.conv:
x = x.view(x.shape[0], -1)
x = cvt(x)
loss = compute_bits_per_dim(x, model)
losses.append(loss)
loss = np.mean(losses)
logger.info("Epoch {:04d} | Time {:.4f}, Bit/dim {:.4f}".format(epoch, time.time() - start, loss))
if loss < best_loss:
best_loss = loss
utils.makedirs(args.save)
torch.save({
"args": args,
"state_dict": model.module.state_dict() if torch.cuda.is_available() else model.state_dict(),
"optim_state_dict": optimizer.state_dict(),
}, os.path.join(args.save, "checkpt.pth"))
# visualize samples and density
with torch.no_grad():
fig_filename = os.path.join(args.save, "figs", "{:04d}.jpg".format(epoch))
utils.makedirs(os.path.dirname(fig_filename))
generated_samples = model(fixed_z, reverse=True).view(-1, *data_shape)
save_image(generated_samples, fig_filename, nrow=10)