-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathnnet.py
173 lines (141 loc) · 4.91 KB
/
nnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import logging
import numpy as np
from autograd import elementwise_grad
from mla.base import BaseEstimator
from mla.metrics.metrics import get_metric
from mla.neuralnet.layers import PhaseMixin
from mla.neuralnet.loss import get_loss
from mla.utils import batch_iterator
np.random.seed(9999)
"""
Architecture inspired from:
https://github.com/fchollet/keras
https://github.com/andersbll/deeppy
"""
class NeuralNet(BaseEstimator):
fit_required = False
def __init__(
self, layers, optimizer, loss, max_epochs=10, batch_size=64, metric="mse", shuffle=False, verbose=True
):
self.verbose = verbose
self.shuffle = shuffle
self.optimizer = optimizer
self.loss = get_loss(loss)
# TODO: fix
if loss == "categorical_crossentropy":
self.loss_grad = lambda actual, predicted: -(actual - predicted)
else:
self.loss_grad = elementwise_grad(self.loss, 1)
self.metric = get_metric(metric)
self.layers = layers
self.batch_size = batch_size
self.max_epochs = max_epochs
self._n_layers = 0
self.log_metric = True if loss != metric else False
self.metric_name = metric
self.bprop_entry = self._find_bprop_entry()
self.training = False
self._initialized = False
def _setup_layers(self, x_shape):
"""Initialize model's layers."""
x_shape = list(x_shape)
x_shape[0] = self.batch_size
for layer in self.layers:
layer.setup(x_shape)
x_shape = layer.shape(x_shape)
self._n_layers = len(self.layers)
# Setup optimizer
self.optimizer.setup(self)
self._initialized = True
logging.info("Total parameters: %s" % self.n_params)
def _find_bprop_entry(self):
"""Find entry layer for back propagation."""
if len(self.layers) > 0 and not hasattr(self.layers[-1], "parameters"):
return -1
return len(self.layers)
def fit(self, X, y=None):
if not self._initialized:
self._setup_layers(X.shape)
if y.ndim == 1:
# Reshape vector to matrix
y = y[:, np.newaxis]
self._setup_input(X, y)
self.is_training = True
# Pass neural network instance to an optimizer
self.optimizer.optimize(self)
self.is_training = False
def update(self, X, y):
# Forward pass
y_pred = self.fprop(X)
# Backward pass
grad = self.loss_grad(y, y_pred)
for layer in reversed(self.layers[: self.bprop_entry]):
grad = layer.backward_pass(grad)
return self.loss(y, y_pred)
def fprop(self, X):
"""Forward propagation."""
for layer in self.layers:
X = layer.forward_pass(X)
return X
def _predict(self, X=None):
if not self._initialized:
self._setup_layers(X.shape)
y = []
X_batch = batch_iterator(X, self.batch_size)
for Xb in X_batch:
y.append(self.fprop(Xb))
return np.concatenate(y)
@property
def parametric_layers(self):
for layer in self.layers:
if hasattr(layer, "parameters"):
yield layer
@property
def parameters(self):
"""Returns a list of all parameters."""
params = []
for layer in self.parametric_layers:
params.append(layer.parameters)
return params
def error(self, X=None, y=None):
"""Calculate an error for given examples."""
training_phase = self.is_training
if training_phase:
# Temporally disable training.
# Some layers work differently while training (e.g. Dropout).
self.is_training = False
if X is None and y is None:
y_pred = self._predict(self.X)
score = self.metric(self.y, y_pred)
else:
y_pred = self._predict(X)
score = self.metric(y, y_pred)
if training_phase:
self.is_training = True
return score
@property
def is_training(self):
return self.training
@is_training.setter
def is_training(self, train):
self.training = train
for layer in self.layers:
if isinstance(layer, PhaseMixin):
layer.is_training = train
def shuffle_dataset(self):
"""Shuffle rows in the dataset."""
n_samples = self.X.shape[0]
indices = np.arange(n_samples)
np.random.shuffle(indices)
self.X = self.X.take(indices, axis=0)
self.y = self.y.take(indices, axis=0)
@property
def n_layers(self):
"""Returns the number of layers."""
return self._n_layers
@property
def n_params(self):
"""Return the number of trainable parameters."""
return sum([layer.parameters.n_params for layer in self.parametric_layers])
def reset(self):
self._initialized = False