-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathmod.rs
1571 lines (1477 loc) · 67.7 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Written in 2019 by Sanket Kanjular and Andrew Poelstra
// SPDX-License-Identifier: CC0-1.0
//! Interpreter
//!
//! Provides a Miniscript-based script interpreter which can be used to
//! iterate over the set of conditions satisfied by a spending transaction,
//! assuming that the spent coin was descriptor controlled.
//!
use core::fmt;
use core::str::FromStr;
use bitcoin::hashes::{hash160, ripemd160, sha256, Hash};
use bitcoin::{absolute, relative, secp256k1, sighash, taproot, Sequence, TxOut, Witness};
use crate::miniscript::context::{NoChecks, SigType};
use crate::miniscript::ScriptContext;
use crate::prelude::*;
use crate::{hash256, Descriptor, Miniscript, Terminal, ToPublicKey};
mod error;
mod inner;
mod stack;
pub use self::error::Error;
use self::error::PkEvalErrInner;
use self::stack::Stack;
use crate::MiniscriptKey;
/// An iterable Miniscript-structured representation of the spending of a coin
pub struct Interpreter<'txin> {
inner: inner::Inner,
stack: Stack<'txin>,
/// For non-Taproot spends, the scriptCode; for Taproot script-spends, this
/// is the leaf script; for key-spends it is `None`.
script_code: Option<bitcoin::ScriptBuf>,
sequence: Sequence,
lock_time: absolute::LockTime,
}
// A type representing functions for checking signatures that accept both
// Ecdsa and Schnorr signatures
/// A type for representing signatures supported as of bitcoin core 22.0
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum KeySigPair {
/// A Full public key and corresponding Ecdsa signature
Ecdsa(bitcoin::PublicKey, bitcoin::ecdsa::Signature),
/// A x-only key and corresponding Schnorr signature
Schnorr(bitcoin::key::XOnlyPublicKey, bitcoin::taproot::Signature),
}
impl KeySigPair {
/// Obtain a pair of ([`bitcoin::PublicKey`], [`bitcoin::ecdsa::Signature`]) from [`KeySigPair`]
pub fn as_ecdsa(&self) -> Option<(bitcoin::PublicKey, bitcoin::ecdsa::Signature)> {
match self {
KeySigPair::Ecdsa(pk, sig) => Some((*pk, *sig)),
KeySigPair::Schnorr(_, _) => None,
}
}
/// Obtain a pair of ([`bitcoin::secp256k1::XOnlyPublicKey`], [`bitcoin::taproot::Signature`]) from [`KeySigPair`]
pub fn as_schnorr(
&self,
) -> Option<(bitcoin::key::XOnlyPublicKey, bitcoin::taproot::Signature)> {
match self {
KeySigPair::Ecdsa(_, _) => None,
KeySigPair::Schnorr(pk, sig) => Some((*pk, *sig)),
}
}
}
// Internally used enum for different types of bitcoin keys
// Even though we implement MiniscriptKey for BitcoinKey, we make sure that there
// are little mis-use
// - The only constructors for this are only called in from_txdata that take care
// using the correct enum variant
// - This does not implement ToPublicKey to avoid context dependant encoding/decoding of 33/32
// byte keys. This allows us to keep a single NoChecks context instead of a context for
// for NoChecksSchnorr/NoChecksEcdsa.
// Long term TODO: There really should be not be any need for Miniscript<Pk: MiniscriptKey> struct
// to have the Pk: MiniscriptKey bound. The bound should be on all of it's methods. That would
// require changing Miniscript struct to three generics Miniscript<Pk, Pkh, Ctx> and bound on
// all of the methods of Miniscript to ensure that Pkh = Pk::Hash
#[derive(Hash, Eq, Ord, PartialEq, PartialOrd, Clone, Copy, Debug)]
enum BitcoinKey {
// Full key
Fullkey(bitcoin::PublicKey),
// Xonly key
XOnlyPublicKey(bitcoin::key::XOnlyPublicKey),
}
impl BitcoinKey {
fn to_pubkeyhash(self, sig_type: SigType) -> hash160::Hash {
match self {
BitcoinKey::Fullkey(pk) => pk.to_pubkeyhash(sig_type),
BitcoinKey::XOnlyPublicKey(pk) => pk.to_pubkeyhash(sig_type),
}
}
}
// Displayed in full 33 byte representation. X-only keys are displayed with 0x02 prefix
impl fmt::Display for BitcoinKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
BitcoinKey::Fullkey(pk) => pk.to_public_key().fmt(f),
BitcoinKey::XOnlyPublicKey(pk) => pk.to_public_key().fmt(f),
}
}
}
impl From<bitcoin::PublicKey> for BitcoinKey {
fn from(pk: bitcoin::PublicKey) -> Self { BitcoinKey::Fullkey(pk) }
}
impl From<bitcoin::key::XOnlyPublicKey> for BitcoinKey {
fn from(xpk: bitcoin::key::XOnlyPublicKey) -> Self { BitcoinKey::XOnlyPublicKey(xpk) }
}
impl MiniscriptKey for BitcoinKey {
type Sha256 = sha256::Hash;
type Hash256 = hash256::Hash;
type Ripemd160 = ripemd160::Hash;
type Hash160 = hash160::Hash;
fn is_uncompressed(&self) -> bool {
match *self {
BitcoinKey::Fullkey(pk) => !pk.compressed,
BitcoinKey::XOnlyPublicKey(_) => false,
}
}
}
impl<'txin> Interpreter<'txin> {
/// Constructs an interpreter from the data of a spending transaction
///
/// Accepts a signature-validating function. If you are willing to trust
/// that ECSDA signatures are valid, this can be set to the constant true
/// function; otherwise, it should be a closure containing a sighash and
/// secp context, which can actually verify a given signature.
pub fn from_txdata(
spk: &bitcoin::ScriptBuf,
script_sig: &'txin bitcoin::Script,
witness: &'txin Witness,
sequence: Sequence, // CSV, relative lock time.
lock_time: absolute::LockTime, // CLTV, absolute lock time.
) -> Result<Self, Error> {
let (inner, stack, script_code) = inner::from_txdata(spk, script_sig, witness)?;
Ok(Interpreter { inner, stack, script_code, sequence, lock_time })
}
/// Same as [`Interpreter::iter`], but allows for a custom verification function.
/// See [Self::iter_assume_sigs] for a simpler API without information about Prevouts
/// but skips the signature verification
pub fn iter_custom<'iter>(
&'iter self,
verify_sig: Box<dyn FnMut(&KeySigPair) -> bool + 'iter>,
) -> Iter<'txin, 'iter> {
Iter {
verify_sig,
public_key: if let inner::Inner::PublicKey(ref pk, _) = self.inner {
Some(pk)
} else {
None
},
state: if let inner::Inner::Script(ref script, _) = self.inner {
vec![NodeEvaluationState { node: script, n_evaluated: 0, n_satisfied: 0 }]
} else {
vec![]
},
// Cloning the references to elements of stack should be fine as it allows
// call interpreter.iter() without mutating interpreter
stack: self.stack.clone(),
sequence: self.sequence,
lock_time: self.lock_time,
has_errored: false,
sig_type: self.sig_type(),
}
}
/// Verify a signature for a given transaction and prevout information
/// This is a low level API, [`Interpreter::iter`] or [`Interpreter::iter_assume_sigs`]
/// should satisfy most use-cases.
/// Returns false if
/// - the signature verification fails
/// - the input index is out of range
/// - Insufficient sighash information is present
/// - sighash single without corresponding output
// TODO: Create a good first isse to change this to error
// TODO: Requires refactor to remove the script_code logic in order to use the new sighash API.
#[allow(deprecated)] // For segwit_signature_hash
pub fn verify_sig<C: secp256k1::Verification, T: Borrow<TxOut>>(
&self,
secp: &secp256k1::Secp256k1<C>,
tx: &bitcoin::Transaction,
input_idx: usize,
prevouts: &sighash::Prevouts<T>,
sig: &KeySigPair,
) -> bool {
fn get_prevout<'u, T: Borrow<TxOut>>(
prevouts: &'u sighash::Prevouts<'u, T>,
input_index: usize,
) -> Option<&'u T> {
match prevouts {
sighash::Prevouts::One(index, prevout) => {
if input_index == *index {
Some(prevout)
} else {
None
}
}
sighash::Prevouts::All(prevouts) => prevouts.get(input_index),
}
}
let mut cache = bitcoin::sighash::SighashCache::new(tx);
match sig {
KeySigPair::Ecdsa(key, ecdsa_sig) => {
let script_pubkey = self.script_code.as_ref().expect("Legacy have script code");
let msg = if self.is_legacy() {
let sighash_u32 = ecdsa_sig.sighash_type.to_u32();
let sighash =
cache.legacy_signature_hash(input_idx, script_pubkey, sighash_u32);
sighash.map(|hash| secp256k1::Message::from_digest(hash.to_byte_array()))
} else if self.is_segwit_v0() {
let amt = match get_prevout(prevouts, input_idx) {
Some(txout) => txout.borrow().value,
None => return false,
};
// TODO: Don't manually handle the script code.
let sighash = cache.p2wsh_signature_hash(
input_idx,
script_pubkey,
amt,
ecdsa_sig.sighash_type,
);
sighash.map(|hash| secp256k1::Message::from_digest(hash.to_byte_array()))
} else {
// taproot(or future) signatures in segwitv0 context
return false;
};
let success = msg.map(|msg| {
secp.verify_ecdsa(&msg, &ecdsa_sig.signature, &key.inner)
.is_ok()
});
success.unwrap_or(false) // unwrap_or checks for errors, while success would have checksig results
}
KeySigPair::Schnorr(xpk, schnorr_sig) => {
let sighash_msg = if self.is_taproot_v1_key_spend() {
cache.taproot_key_spend_signature_hash(
input_idx,
prevouts,
schnorr_sig.sighash_type,
)
} else if self.is_taproot_v1_script_spend() {
let tap_script = self.script_code.as_ref().expect(
"Internal Hack: Saving leaf script instead\
of script code for script spend",
);
let leaf_hash = taproot::TapLeafHash::from_script(
tap_script,
taproot::LeafVersion::TapScript,
);
cache.taproot_script_spend_signature_hash(
input_idx,
prevouts,
leaf_hash,
schnorr_sig.sighash_type,
)
} else {
// schnorr sigs in ecdsa descriptors
return false;
};
let msg =
sighash_msg.map(|hash| secp256k1::Message::from_digest(hash.to_byte_array()));
let success = msg.map(|msg| {
secp.verify_schnorr(&schnorr_sig.signature, &msg, xpk)
.is_ok()
});
success.unwrap_or(false) // unwrap_or_default checks for errors, while success would have checksig results
}
}
}
/// Creates an iterator over the satisfied spending conditions
///
/// Returns all satisfied constraints, even if they were redundant (i.e. did
/// not contribute to the script being satisfied). For example, if a signature
/// were provided for an `and_b(Pk,false)` fragment, that signature will be
/// returned, even though the entire and_b must have failed and must not have
/// been used.
///
/// In case the script is actually dissatisfied, this may return several values
/// before ultimately returning an error.
///
/// Not all fields are used by legacy/segwitv0 descriptors; if you are sure this is a legacy
/// spend (you can check with the `is_legacy\is_segwitv0` method) you can provide dummy data for
/// the amount/prevouts.
/// - For legacy outputs, no information about prevouts is required
/// - For segwitv0 outputs, prevout at corresponding index with correct amount must be provided
/// - For taproot outputs, information about all prevouts must be supplied
pub fn iter<'iter, C: secp256k1::Verification, T: Borrow<TxOut>>(
&'iter self,
secp: &'iter secp256k1::Secp256k1<C>,
tx: &'txin bitcoin::Transaction,
input_idx: usize,
prevouts: &'iter sighash::Prevouts<T>, // actually a 'prevouts, but 'prevouts: 'iter
) -> Iter<'txin, 'iter> {
self.iter_custom(Box::new(move |sig| self.verify_sig(secp, tx, input_idx, prevouts, sig)))
}
/// Creates an iterator over the satisfied spending conditions without checking signatures
pub fn iter_assume_sigs<'iter>(&'iter self) -> Iter<'txin, 'iter> {
self.iter_custom(Box::new(|_| true))
}
/// Outputs a "descriptor" string which reproduces the spent coins
///
/// This may not represent the original descriptor used to produce the transaction,
/// since it cannot distinguish between sorted and unsorted multisigs (and anyway
/// it can only see the final keys, keyorigin info is lost in serializing to Bitcoin).
///
/// If you are using the interpreter as a sanity check on a transaction,
/// it is worthwhile to try to parse this as a descriptor using `from_str`
/// which will check standardness and consensus limits, which the interpreter
/// does not do on its own. Or use the `inferred_descriptor` method which
/// does this for you.
pub fn inferred_descriptor_string(&self) -> String {
match self.inner {
inner::Inner::PublicKey(ref pk, inner::PubkeyType::Pk) => format!("pk({})", pk),
inner::Inner::PublicKey(ref pk, inner::PubkeyType::Pkh) => format!("pkh({})", pk),
inner::Inner::PublicKey(ref pk, inner::PubkeyType::Wpkh) => format!("wpkh({})", pk),
inner::Inner::PublicKey(ref pk, inner::PubkeyType::ShWpkh) => {
format!("sh(wpkh({}))", pk)
}
inner::Inner::PublicKey(ref pk, inner::PubkeyType::Tr) => {
// In tr descriptors, normally the internal key is represented inside the tr part
// But there is no way to infer the internal key from output descriptor status
// instead we infer a rawtr.
// Note that rawtr is parsing is currently not supported.
format!("rawtr_not_supported_yet({})", pk)
}
inner::Inner::Script(ref ms, inner::ScriptType::Bare) => format!("{}", ms),
inner::Inner::Script(ref ms, inner::ScriptType::Sh) => format!("sh({})", ms),
inner::Inner::Script(ref ms, inner::ScriptType::Wsh) => format!("wsh({})", ms),
inner::Inner::Script(ref ms, inner::ScriptType::ShWsh) => format!("sh(wsh({}))", ms),
inner::Inner::Script(ref ms, inner::ScriptType::Tr) => {
// Hidden paths are still under discussion, once the spec is finalized, we can support
// rawnode and raw leaf.
format!("tr(hidden_paths_not_yet_supported,{})", ms)
}
}
}
/// Whether this is a pre-segwit spend
pub fn is_legacy(&self) -> bool {
match self.inner {
inner::Inner::PublicKey(_, inner::PubkeyType::Pk) => true,
inner::Inner::PublicKey(_, inner::PubkeyType::Pkh) => true,
inner::Inner::PublicKey(_, inner::PubkeyType::Wpkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::ShWpkh) => false, // lol "sorta"
inner::Inner::PublicKey(_, inner::PubkeyType::Tr) => false, // lol "sorta"
inner::Inner::Script(_, inner::ScriptType::Bare) => true,
inner::Inner::Script(_, inner::ScriptType::Sh) => true,
inner::Inner::Script(_, inner::ScriptType::Wsh) => false,
inner::Inner::Script(_, inner::ScriptType::ShWsh) => false, // lol "sorta"
inner::Inner::Script(_, inner::ScriptType::Tr) => false,
}
}
/// Whether this is a segwit v0 spend (wrapped or native)
pub fn is_segwit_v0(&self) -> bool {
match self.inner {
inner::Inner::PublicKey(_, inner::PubkeyType::Pk) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Pkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Wpkh) => true,
inner::Inner::PublicKey(_, inner::PubkeyType::ShWpkh) => true, // lol "sorta"
inner::Inner::PublicKey(_, inner::PubkeyType::Tr) => false,
inner::Inner::Script(_, inner::ScriptType::Bare) => false,
inner::Inner::Script(_, inner::ScriptType::Sh) => false,
inner::Inner::Script(_, inner::ScriptType::Wsh) => true,
inner::Inner::Script(_, inner::ScriptType::ShWsh) => true, // lol "sorta"
inner::Inner::Script(_, inner::ScriptType::Tr) => false,
}
}
/// Whether this is a taproot key spend
pub fn is_taproot_v1_key_spend(&self) -> bool {
match self.inner {
inner::Inner::PublicKey(_, inner::PubkeyType::Pk) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Pkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Wpkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::ShWpkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Tr) => true,
inner::Inner::Script(_, inner::ScriptType::Bare) => false,
inner::Inner::Script(_, inner::ScriptType::Sh) => false,
inner::Inner::Script(_, inner::ScriptType::Wsh) => false,
inner::Inner::Script(_, inner::ScriptType::ShWsh) => false,
inner::Inner::Script(_, inner::ScriptType::Tr) => false,
}
}
/// Whether this is a taproot script spend
pub fn is_taproot_v1_script_spend(&self) -> bool {
match self.inner {
inner::Inner::PublicKey(_, inner::PubkeyType::Pk) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Pkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Wpkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::ShWpkh) => false,
inner::Inner::PublicKey(_, inner::PubkeyType::Tr) => false,
inner::Inner::Script(_, inner::ScriptType::Bare) => false,
inner::Inner::Script(_, inner::ScriptType::Sh) => false,
inner::Inner::Script(_, inner::ScriptType::Wsh) => false,
inner::Inner::Script(_, inner::ScriptType::ShWsh) => false,
inner::Inner::Script(_, inner::ScriptType::Tr) => true,
}
}
/// Signature type of the spend
pub fn sig_type(&self) -> SigType {
match self.inner {
inner::Inner::PublicKey(_, inner::PubkeyType::Tr) => SigType::Schnorr,
inner::Inner::Script(_, inner::ScriptType::Tr) => SigType::Schnorr,
inner::Inner::PublicKey(_, inner::PubkeyType::Pk)
| inner::Inner::PublicKey(_, inner::PubkeyType::Pkh)
| inner::Inner::PublicKey(_, inner::PubkeyType::Wpkh)
| inner::Inner::PublicKey(_, inner::PubkeyType::ShWpkh)
| inner::Inner::Script(_, inner::ScriptType::Bare)
| inner::Inner::Script(_, inner::ScriptType::Sh)
| inner::Inner::Script(_, inner::ScriptType::Wsh)
| inner::Inner::Script(_, inner::ScriptType::ShWsh) => SigType::Ecdsa,
}
}
/// Outputs a "descriptor" which reproduces the spent coins
///
/// This may not represent the original descriptor used to produce the transaction,
/// since it cannot distinguish between sorted and unsorted multisigs (and anyway
/// it can only see the final keys, keyorigin info is lost in serializing to Bitcoin).
/// x-only keys are translated to [`bitcoin::PublicKey`] with 0x02 prefix.
pub fn inferred_descriptor(&self) -> Result<Descriptor<bitcoin::PublicKey>, crate::Error> {
Descriptor::from_str(&self.inferred_descriptor_string())
}
}
/// Type of HashLock used for SatisfiedConstraint structure
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum HashLockType {
///SHA 256 hashlock
Sha256(sha256::Hash),
///Hash 256 hashlock
Hash256(hash256::Hash),
///Hash160 hashlock
Hash160(hash160::Hash),
///Ripemd160 hashlock
Ripemd160(ripemd160::Hash),
}
/// A satisfied Miniscript condition (Signature, Hashlock, Timelock)
/// 'intp represents the lifetime of descriptor and `stack represents
/// the lifetime of witness
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum SatisfiedConstraint {
///Public key and corresponding signature
PublicKey {
/// KeySig pair
key_sig: KeySigPair,
},
///PublicKeyHash, corresponding pubkey and signature
PublicKeyHash {
/// The pubkey hash
keyhash: hash160::Hash,
/// public key and signature
key_sig: KeySigPair,
},
///Hashlock and preimage for SHA256
HashLock {
/// The type of Hashlock
hash: HashLockType,
/// The preimage used for satisfaction
preimage: [u8; 32],
},
///Relative Timelock for CSV.
RelativeTimelock {
/// The value of RelativeTimelock
n: relative::LockTime,
},
///Absolute Timelock for CLTV.
AbsoluteTimelock {
/// The value of Absolute timelock
n: absolute::LockTime,
},
}
///This is used by the interpreter to know which evaluation state a AstemElem is.
///This is required because whenever a same node(for eg. OrB) appears on the stack, we don't
///know if the left child has been evaluated or not. And based on the result on
///the top of the stack, we need to decide whether to execute right child or not.
///This is also useful for wrappers and thresholds which push a value on the stack
///depending on evaluation of the children.
struct NodeEvaluationState<'intp> {
///The node which is being evaluated
node: &'intp Miniscript<BitcoinKey, NoChecks>,
///number of children evaluated
n_evaluated: usize,
///number of children satisfied
n_satisfied: usize,
}
/// Iterator over all the constraints satisfied by a completed scriptPubKey
/// and witness stack
///
/// Returns all satisfied constraints, even if they were redundant (i.e. did
/// not contribute to the script being satisfied). For example, if a signature
/// were provided for an `and_b(Pk,false)` fragment, that signature will be
/// returned, even though the entire and_b must have failed and must not have
/// been used.
///
/// In case the script is actually dissatisfied, this may return several values
/// before ultimately returning an error.
pub struct Iter<'intp, 'txin: 'intp> {
verify_sig: Box<dyn FnMut(&KeySigPair) -> bool + 'intp>,
public_key: Option<&'intp BitcoinKey>,
state: Vec<NodeEvaluationState<'intp>>,
stack: Stack<'txin>,
sequence: Sequence,
lock_time: absolute::LockTime,
has_errored: bool,
sig_type: SigType,
}
///Iterator for Iter
impl<'intp, 'txin: 'intp> Iterator for Iter<'intp, 'txin>
where
NoChecks: ScriptContext,
{
type Item = Result<SatisfiedConstraint, Error>;
fn next(&mut self) -> Option<Self::Item> {
if self.has_errored {
// Stop yielding values after the first error
None
} else {
let res = self.iter_next();
if let Some(Err(_)) = res {
self.has_errored = true;
}
res
}
}
}
impl<'intp, 'txin: 'intp> Iter<'intp, 'txin>
where
NoChecks: ScriptContext,
{
/// Helper function to push a NodeEvaluationState on state stack
fn push_evaluation_state(
&mut self,
node: &'intp Miniscript<BitcoinKey, NoChecks>,
n_evaluated: usize,
n_satisfied: usize,
) {
self.state
.push(NodeEvaluationState { node, n_evaluated, n_satisfied })
}
/// Helper function to step the iterator
fn iter_next(&mut self) -> Option<Result<SatisfiedConstraint, Error>> {
while let Some(node_state) = self.state.pop() {
//non-empty stack
match node_state.node.node {
Terminal::True => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
self.stack.push(stack::Element::Satisfied);
}
Terminal::False => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
self.stack.push(stack::Element::Dissatisfied);
}
Terminal::PkK(ref pk) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self.stack.evaluate_pk(&mut self.verify_sig, *pk);
if res.is_some() {
return res;
}
}
Terminal::PkH(ref pk) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self.stack.evaluate_pkh(
&mut self.verify_sig,
pk.to_pubkeyhash(self.sig_type),
self.sig_type,
);
if res.is_some() {
return res;
}
}
Terminal::RawPkH(ref pkh) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self
.stack
.evaluate_pkh(&mut self.verify_sig, *pkh, self.sig_type);
if res.is_some() {
return res;
}
}
Terminal::After(ref n) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self
.stack
.evaluate_after(&absolute::LockTime::from(*n), self.lock_time);
if res.is_some() {
return res;
}
}
Terminal::Older(ref n) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self.stack.evaluate_older(&(*n).into(), self.sequence);
if res.is_some() {
return res;
}
}
Terminal::Sha256(ref hash) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self.stack.evaluate_sha256(hash);
if res.is_some() {
return res;
}
}
Terminal::Hash256(ref hash) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self.stack.evaluate_hash256(hash);
if res.is_some() {
return res;
}
}
Terminal::Hash160(ref hash) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self.stack.evaluate_hash160(hash);
if res.is_some() {
return res;
}
}
Terminal::Ripemd160(ref hash) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
let res = self.stack.evaluate_ripemd160(hash);
if res.is_some() {
return res;
}
}
Terminal::Alt(ref sub) | Terminal::Swap(ref sub) | Terminal::Check(ref sub) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
self.push_evaluation_state(sub, 0, 0);
}
Terminal::DupIf(ref sub) if node_state.n_evaluated == 0 => match self.stack.pop() {
Some(stack::Element::Dissatisfied) => {
self.stack.push(stack::Element::Dissatisfied);
}
Some(stack::Element::Satisfied) => {
self.push_evaluation_state(node_state.node, 1, 1);
self.push_evaluation_state(sub, 0, 0);
}
Some(stack::Element::Push(_v)) => {
return Some(Err(Error::UnexpectedStackElementPush))
}
None => return Some(Err(Error::UnexpectedStackEnd)),
},
Terminal::DupIf(ref _sub) if node_state.n_evaluated == 1 => {
self.stack.push(stack::Element::Satisfied);
}
Terminal::ZeroNotEqual(ref sub) | Terminal::Verify(ref sub)
if node_state.n_evaluated == 0 =>
{
self.push_evaluation_state(node_state.node, 1, 0);
self.push_evaluation_state(sub, 0, 0);
}
Terminal::Verify(ref _sub) if node_state.n_evaluated == 1 => {
match self.stack.pop() {
Some(stack::Element::Satisfied) => (),
Some(_) => return Some(Err(Error::VerifyFailed)),
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::ZeroNotEqual(ref _sub) if node_state.n_evaluated == 1 => {
match self.stack.pop() {
Some(stack::Element::Dissatisfied) => {
self.stack.push(stack::Element::Dissatisfied)
}
Some(_) => self.stack.push(stack::Element::Satisfied),
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::NonZero(ref sub) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
match self.stack.last() {
Some(&stack::Element::Dissatisfied) => (),
Some(_) => self.push_evaluation_state(sub, 0, 0),
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::AndV(ref left, ref right) => {
debug_assert_eq!(node_state.n_evaluated, 0);
debug_assert_eq!(node_state.n_satisfied, 0);
self.push_evaluation_state(right, 0, 0);
self.push_evaluation_state(left, 0, 0);
}
Terminal::OrB(ref left, ref _right) | Terminal::AndB(ref left, ref _right)
if node_state.n_evaluated == 0 =>
{
self.push_evaluation_state(node_state.node, 1, 0);
self.push_evaluation_state(left, 0, 0);
}
Terminal::OrB(ref _left, ref right) | Terminal::AndB(ref _left, ref right)
if node_state.n_evaluated == 1 =>
{
match self.stack.pop() {
Some(stack::Element::Dissatisfied) => {
self.push_evaluation_state(node_state.node, 2, 0);
self.push_evaluation_state(right, 0, 0);
}
Some(stack::Element::Satisfied) => {
self.push_evaluation_state(node_state.node, 2, 1);
self.push_evaluation_state(right, 0, 0);
}
Some(stack::Element::Push(_v)) => {
return Some(Err(Error::UnexpectedStackElementPush))
}
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::AndB(ref _left, ref _right) if node_state.n_evaluated == 2 => {
match self.stack.pop() {
Some(stack::Element::Satisfied) if node_state.n_satisfied == 1 => {
self.stack.push(stack::Element::Satisfied)
}
Some(_) => self.stack.push(stack::Element::Dissatisfied),
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::AndOr(ref left, ref _right, _)
| Terminal::OrC(ref left, ref _right)
| Terminal::OrD(ref left, ref _right)
if node_state.n_evaluated == 0 =>
{
self.push_evaluation_state(node_state.node, 1, 0);
self.push_evaluation_state(left, 0, 0);
}
Terminal::OrB(ref _left, ref _right) if node_state.n_evaluated == 2 => {
match self.stack.pop() {
Some(stack::Element::Dissatisfied) if node_state.n_satisfied == 0 => {
self.stack.push(stack::Element::Dissatisfied)
}
Some(_) => {
self.stack.push(stack::Element::Satisfied);
}
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::OrC(ref _left, ref right) if node_state.n_evaluated == 1 => {
match self.stack.pop() {
Some(stack::Element::Satisfied) => (),
Some(stack::Element::Dissatisfied) => {
self.push_evaluation_state(right, 0, 0)
}
Some(stack::Element::Push(_v)) => {
return Some(Err(Error::UnexpectedStackElementPush))
}
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::OrD(ref _left, ref right) if node_state.n_evaluated == 1 => {
match self.stack.pop() {
Some(stack::Element::Satisfied) => {
self.stack.push(stack::Element::Satisfied)
}
Some(stack::Element::Dissatisfied) => {
self.push_evaluation_state(right, 0, 0)
}
Some(stack::Element::Push(_v)) => {
return Some(Err(Error::UnexpectedStackElementPush))
}
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::AndOr(_, ref left, ref right) | Terminal::OrI(ref left, ref right) => {
match self.stack.pop() {
Some(stack::Element::Satisfied) => self.push_evaluation_state(left, 0, 0),
Some(stack::Element::Dissatisfied) => {
self.push_evaluation_state(right, 0, 0)
}
Some(stack::Element::Push(_v)) => {
return Some(Err(Error::UnexpectedStackElementPush))
}
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::Thresh(ref thresh) if node_state.n_evaluated == 0 => {
self.push_evaluation_state(node_state.node, 1, 0);
self.push_evaluation_state(&thresh.data()[0], 0, 0);
}
Terminal::Thresh(ref thresh) if node_state.n_evaluated == thresh.n() => {
match self.stack.pop() {
Some(stack::Element::Dissatisfied)
if node_state.n_satisfied == thresh.k() =>
{
self.stack.push(stack::Element::Satisfied)
}
Some(stack::Element::Satisfied)
if node_state.n_satisfied == thresh.k() - 1 =>
{
self.stack.push(stack::Element::Satisfied)
}
Some(stack::Element::Satisfied) | Some(stack::Element::Dissatisfied) => {
self.stack.push(stack::Element::Dissatisfied)
}
Some(stack::Element::Push(_v)) => {
return Some(Err(Error::UnexpectedStackElementPush))
}
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::Thresh(ref thresh) if node_state.n_evaluated != 0 => {
match self.stack.pop() {
Some(stack::Element::Dissatisfied) => {
self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied,
);
self.push_evaluation_state(
&thresh.data()[node_state.n_evaluated],
0,
0,
);
}
Some(stack::Element::Satisfied) => {
self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied + 1,
);
self.push_evaluation_state(
&thresh.data()[node_state.n_evaluated],
0,
0,
);
}
Some(stack::Element::Push(_v)) => {
return Some(Err(Error::UnexpectedStackElementPush))
}
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
Terminal::MultiA(ref thresh) => {
if node_state.n_evaluated == thresh.n() {
if node_state.n_satisfied == thresh.k() {
self.stack.push(stack::Element::Satisfied);
} else {
self.stack.push(stack::Element::Dissatisfied);
}
} else {
// evaluate each key with as a pk
// note that evaluate_pk will error on non-empty incorrect sigs
// push 1 on satisfied sigs and push 0 on empty sigs
match self.stack.evaluate_pk(
&mut self.verify_sig,
thresh.data()[node_state.n_evaluated],
) {
Some(Ok(x)) => {
self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied + 1,
);
match self.stack.pop() {
Some(..) => return Some(Ok(x)),
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
None => {
self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied,
);
match self.stack.pop() {
Some(..) => {} // not-satisfied, look for next key
None => return Some(Err(Error::UnexpectedStackEnd)),
}
}
x => return x, //forward errors as is
}
}
}
Terminal::Multi(ref thresh) if node_state.n_evaluated == 0 => {
let len = self.stack.len();
if len < thresh.k() + 1 {
return Some(Err(Error::InsufficientSignaturesMultiSig));
} else {
//Non-sat case. If the first sig is empty, others k elements must
//be empty.
match self.stack.last() {
Some(&stack::Element::Dissatisfied) => {
//Remove the extra zero from multi-sig check
let sigs = self.stack.split_off(len - (thresh.k() + 1));
let nonsat = sigs
.iter()
.map(|sig| *sig == stack::Element::Dissatisfied)
.filter(|empty| *empty)
.count();
if nonsat == thresh.k() + 1 {
self.stack.push(stack::Element::Dissatisfied);
} else {
return Some(Err(Error::MissingExtraZeroMultiSig));
}
}
None => return Some(Err(Error::UnexpectedStackEnd)),
_ => {
match self.stack.evaluate_multi(
&mut self.verify_sig,
&thresh.data()[thresh.n() - 1],
) {
Some(Ok(x)) => {
self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied + 1,
);
return Some(Ok(x));
}
None => self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied,
),
x => return x, //forward errors as is
}
}
}
}
}
Terminal::Multi(ref thresh) => {
if node_state.n_satisfied == thresh.k() {
//multi-sig bug: Pop extra 0
if let Some(stack::Element::Dissatisfied) = self.stack.pop() {
self.stack.push(stack::Element::Satisfied);
} else {
return Some(Err(Error::MissingExtraZeroMultiSig));
}
} else if node_state.n_evaluated == thresh.n() {
return Some(Err(Error::MultiSigEvaluationError));
} else {
match self.stack.evaluate_multi(
&mut self.verify_sig,
&thresh.data()[thresh.n() - node_state.n_evaluated - 1],
) {
Some(Ok(x)) => {
self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied + 1,
);
return Some(Ok(x));
}
None => self.push_evaluation_state(
node_state.node,
node_state.n_evaluated + 1,
node_state.n_satisfied,
),
x => return x, //forward errors as is
}
}
}
//All other match patterns should not be reached in any valid
//type checked Miniscript
_ => return Some(Err(Error::CouldNotEvaluate)),
};
}
//state empty implies that either the execution has terminated or we have a
//Pk based descriptor
if let Some(pk) = self.public_key {
if let Some(stack::Element::Push(sig)) = self.stack.pop() {
if let Ok(key_sig) = verify_sersig(&mut self.verify_sig, pk, sig) {
//Signature check successful, set public_key to None to