-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathmod.rs
2268 lines (2024 loc) · 95.4 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use std::collections::VecDeque;
use std::rc::Rc;
use rustc_data_structures::binary_search_util;
use rustc_data_structures::frozen::Frozen;
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_data_structures::graph::scc::{self, Sccs};
use rustc_errors::Diag;
use rustc_hir::def_id::CRATE_DEF_ID;
use rustc_index::IndexVec;
use rustc_infer::infer::outlives::test_type_match;
use rustc_infer::infer::region_constraints::{GenericKind, VarInfos, VerifyBound, VerifyIfEq};
use rustc_infer::infer::{InferCtxt, NllRegionVariableOrigin, RegionVariableOrigin};
use rustc_middle::bug;
use rustc_middle::mir::{
BasicBlock, Body, ClosureOutlivesRequirement, ClosureOutlivesSubject, ClosureOutlivesSubjectTy,
ClosureRegionRequirements, ConstraintCategory, Local, Location, ReturnConstraint,
TerminatorKind,
};
use rustc_middle::traits::{ObligationCause, ObligationCauseCode};
use rustc_middle::ty::{self, RegionVid, Ty, TyCtxt, TypeFoldable, UniverseIndex};
use rustc_mir_dataflow::points::DenseLocationMap;
use rustc_span::Span;
use tracing::{debug, instrument, trace};
use crate::constraints::graph::{self, NormalConstraintGraph, RegionGraph};
use crate::constraints::{ConstraintSccIndex, OutlivesConstraint, OutlivesConstraintSet};
use crate::dataflow::BorrowIndex;
use crate::diagnostics::{RegionErrorKind, RegionErrors, UniverseInfo};
use crate::member_constraints::{MemberConstraintSet, NllMemberConstraintIndex};
use crate::nll::PoloniusOutput;
use crate::region_infer::reverse_sccs::ReverseSccGraph;
use crate::region_infer::values::{
LivenessValues, PlaceholderIndices, RegionElement, RegionValues, ToElementIndex,
};
use crate::type_check::free_region_relations::UniversalRegionRelations;
use crate::type_check::Locations;
use crate::universal_regions::UniversalRegions;
use crate::BorrowckInferCtxt;
mod dump_mir;
mod graphviz;
mod opaque_types;
mod reverse_sccs;
pub(crate) mod values;
pub(crate) type ConstraintSccs = Sccs<RegionVid, ConstraintSccIndex, RegionTracker>;
/// An annotation for region graph SCCs that tracks
/// the values of its elements.
#[derive(Copy, Debug, Clone)]
pub struct RegionTracker {
/// The largest universe of a placeholder reached from this SCC.
/// This includes placeholders within this SCC.
max_placeholder_universe_reached: UniverseIndex,
/// The smallest universe index reachable form the nodes of this SCC.
min_reachable_universe: UniverseIndex,
/// The representative Region Variable Id for this SCC. We prefer
/// placeholders over existentially quantified variables, otherwise
/// it's the one with the smallest Region Variable ID.
pub(crate) representative: RegionVid,
/// Is the current representative a placeholder?
representative_is_placeholder: bool,
/// Is the current representative existentially quantified?
representative_is_existential: bool,
}
impl scc::Annotation for RegionTracker {
fn merge_scc(mut self, mut other: Self) -> Self {
// Prefer any placeholder over any existential
if other.representative_is_placeholder && self.representative_is_existential {
other.merge_min_max_seen(&self);
return other;
}
if self.representative_is_placeholder && other.representative_is_existential
|| (self.representative <= other.representative)
{
self.merge_min_max_seen(&other);
return self;
}
other.merge_min_max_seen(&self);
other
}
fn merge_reached(mut self, other: Self) -> Self {
// No update to in-component values, only add seen values.
self.merge_min_max_seen(&other);
self
}
}
impl RegionTracker {
pub(crate) fn new(rvid: RegionVid, definition: &RegionDefinition<'_>) -> Self {
let (representative_is_placeholder, representative_is_existential) = match definition.origin
{
rustc_infer::infer::NllRegionVariableOrigin::FreeRegion => (false, false),
rustc_infer::infer::NllRegionVariableOrigin::Placeholder(_) => (true, false),
rustc_infer::infer::NllRegionVariableOrigin::Existential { .. } => (false, true),
};
let placeholder_universe =
if representative_is_placeholder { definition.universe } else { UniverseIndex::ROOT };
Self {
max_placeholder_universe_reached: placeholder_universe,
min_reachable_universe: definition.universe,
representative: rvid,
representative_is_placeholder,
representative_is_existential,
}
}
/// The smallest-indexed universe reachable from and/or in this SCC.
fn min_universe(self) -> UniverseIndex {
self.min_reachable_universe
}
fn merge_min_max_seen(&mut self, other: &Self) {
self.max_placeholder_universe_reached = std::cmp::max(
self.max_placeholder_universe_reached,
other.max_placeholder_universe_reached,
);
self.min_reachable_universe =
std::cmp::min(self.min_reachable_universe, other.min_reachable_universe);
}
/// Returns `true` if during the annotated SCC reaches a placeholder
/// with a universe larger than the smallest reachable one, `false` otherwise.
pub(crate) fn has_incompatible_universes(&self) -> bool {
self.min_universe().cannot_name(self.max_placeholder_universe_reached)
}
}
pub struct RegionInferenceContext<'tcx> {
pub var_infos: VarInfos,
/// Contains the definition for every region variable. Region
/// variables are identified by their index (`RegionVid`). The
/// definition contains information about where the region came
/// from as well as its final inferred value.
definitions: IndexVec<RegionVid, RegionDefinition<'tcx>>,
/// The liveness constraints added to each region. For most
/// regions, these start out empty and steadily grow, though for
/// each universally quantified region R they start out containing
/// the entire CFG and `end(R)`.
liveness_constraints: LivenessValues,
/// The outlives constraints computed by the type-check.
constraints: Frozen<OutlivesConstraintSet<'tcx>>,
/// The constraint-set, but in graph form, making it easy to traverse
/// the constraints adjacent to a particular region. Used to construct
/// the SCC (see `constraint_sccs`) and for error reporting.
constraint_graph: Frozen<NormalConstraintGraph>,
/// The SCC computed from `constraints` and the constraint
/// graph. We have an edge from SCC A to SCC B if `A: B`. Used to
/// compute the values of each region.
constraint_sccs: ConstraintSccs,
/// Reverse of the SCC constraint graph -- i.e., an edge `A -> B` exists if
/// `B: A`. This is used to compute the universal regions that are required
/// to outlive a given SCC. Computed lazily.
rev_scc_graph: Option<ReverseSccGraph>,
/// The "R0 member of [R1..Rn]" constraints, indexed by SCC.
member_constraints: Rc<MemberConstraintSet<'tcx, ConstraintSccIndex>>,
/// Records the member constraints that we applied to each scc.
/// This is useful for error reporting. Once constraint
/// propagation is done, this vector is sorted according to
/// `member_region_scc`.
member_constraints_applied: Vec<AppliedMemberConstraint>,
/// Map universe indexes to information on why we created it.
universe_causes: FxIndexMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
/// The final inferred values of the region variables; we compute
/// one value per SCC. To get the value for any given *region*,
/// you first find which scc it is a part of.
scc_values: RegionValues<ConstraintSccIndex>,
/// Type constraints that we check after solving.
type_tests: Vec<TypeTest<'tcx>>,
/// Information about the universally quantified regions in scope
/// on this function.
universal_regions: Rc<UniversalRegions<'tcx>>,
/// Information about how the universally quantified regions in
/// scope on this function relate to one another.
universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
}
/// Each time that `apply_member_constraint` is successful, it appends
/// one of these structs to the `member_constraints_applied` field.
/// This is used in error reporting to trace out what happened.
///
/// The way that `apply_member_constraint` works is that it effectively
/// adds a new lower bound to the SCC it is analyzing: so you wind up
/// with `'R: 'O` where `'R` is the pick-region and `'O` is the
/// minimal viable option.
#[derive(Debug)]
pub(crate) struct AppliedMemberConstraint {
/// The SCC that was affected. (The "member region".)
///
/// The vector if `AppliedMemberConstraint` elements is kept sorted
/// by this field.
pub(crate) member_region_scc: ConstraintSccIndex,
/// The "best option" that `apply_member_constraint` found -- this was
/// added as an "ad-hoc" lower-bound to `member_region_scc`.
pub(crate) min_choice: ty::RegionVid,
/// The "member constraint index" -- we can find out details about
/// the constraint from
/// `set.member_constraints[member_constraint_index]`.
pub(crate) member_constraint_index: NllMemberConstraintIndex,
}
#[derive(Debug)]
pub(crate) struct RegionDefinition<'tcx> {
/// What kind of variable is this -- a free region? existential
/// variable? etc. (See the `NllRegionVariableOrigin` for more
/// info.)
pub(crate) origin: NllRegionVariableOrigin,
/// Which universe is this region variable defined in? This is
/// most often `ty::UniverseIndex::ROOT`, but when we encounter
/// forall-quantifiers like `for<'a> { 'a = 'b }`, we would create
/// the variable for `'a` in a fresh universe that extends ROOT.
pub(crate) universe: ty::UniverseIndex,
/// If this is 'static or an early-bound region, then this is
/// `Some(X)` where `X` is the name of the region.
pub(crate) external_name: Option<ty::Region<'tcx>>,
}
/// N.B., the variants in `Cause` are intentionally ordered. Lower
/// values are preferred when it comes to error messages. Do not
/// reorder willy nilly.
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
pub(crate) enum Cause {
/// point inserted because Local was live at the given Location
LiveVar(Local, Location),
/// point inserted because Local was dropped at the given Location
DropVar(Local, Location),
}
/// A "type test" corresponds to an outlives constraint between a type
/// and a lifetime, like `T: 'x` or `<T as Foo>::Bar: 'x`. They are
/// translated from the `Verify` region constraints in the ordinary
/// inference context.
///
/// These sorts of constraints are handled differently than ordinary
/// constraints, at least at present. During type checking, the
/// `InferCtxt::process_registered_region_obligations` method will
/// attempt to convert a type test like `T: 'x` into an ordinary
/// outlives constraint when possible (for example, `&'a T: 'b` will
/// be converted into `'a: 'b` and registered as a `Constraint`).
///
/// In some cases, however, there are outlives relationships that are
/// not converted into a region constraint, but rather into one of
/// these "type tests". The distinction is that a type test does not
/// influence the inference result, but instead just examines the
/// values that we ultimately inferred for each region variable and
/// checks that they meet certain extra criteria. If not, an error
/// can be issued.
///
/// One reason for this is that these type tests typically boil down
/// to a check like `'a: 'x` where `'a` is a universally quantified
/// region -- and therefore not one whose value is really meant to be
/// *inferred*, precisely (this is not always the case: one can have a
/// type test like `<Foo as Trait<'?0>>::Bar: 'x`, where `'?0` is an
/// inference variable). Another reason is that these type tests can
/// involve *disjunction* -- that is, they can be satisfied in more
/// than one way.
///
/// For more information about this translation, see
/// `InferCtxt::process_registered_region_obligations` and
/// `InferCtxt::type_must_outlive` in `rustc_infer::infer::InferCtxt`.
#[derive(Clone, Debug)]
pub(crate) struct TypeTest<'tcx> {
/// The type `T` that must outlive the region.
pub generic_kind: GenericKind<'tcx>,
/// The region `'x` that the type must outlive.
pub lower_bound: RegionVid,
/// The span to blame.
pub span: Span,
/// A test which, if met by the region `'x`, proves that this type
/// constraint is satisfied.
pub verify_bound: VerifyBound<'tcx>,
}
/// When we have an unmet lifetime constraint, we try to propagate it outward (e.g. to a closure
/// environment). If we can't, it is an error.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum RegionRelationCheckResult {
Ok,
Propagated,
Error,
}
#[derive(Clone, PartialEq, Eq, Debug)]
enum Trace<'tcx> {
StartRegion,
FromOutlivesConstraint(OutlivesConstraint<'tcx>),
NotVisited,
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) enum ExtraConstraintInfo {
PlaceholderFromPredicate(Span),
}
#[instrument(skip(infcx, sccs), level = "debug")]
fn sccs_info<'tcx>(infcx: &BorrowckInferCtxt<'tcx>, sccs: &ConstraintSccs) {
use crate::renumber::RegionCtxt;
let var_to_origin = infcx.reg_var_to_origin.borrow();
let mut var_to_origin_sorted = var_to_origin.clone().into_iter().collect::<Vec<_>>();
var_to_origin_sorted.sort_by_key(|vto| vto.0);
let mut reg_vars_to_origins_str = "region variables to origins:\n".to_string();
for (reg_var, origin) in var_to_origin_sorted.into_iter() {
reg_vars_to_origins_str.push_str(&format!("{reg_var:?}: {origin:?}\n"));
}
debug!("{}", reg_vars_to_origins_str);
let num_components = sccs.num_sccs();
let mut components = vec![FxIndexSet::default(); num_components];
for (reg_var_idx, scc_idx) in sccs.scc_indices().iter().enumerate() {
let reg_var = ty::RegionVid::from_usize(reg_var_idx);
let origin = var_to_origin.get(®_var).unwrap_or(&RegionCtxt::Unknown);
components[scc_idx.as_usize()].insert((reg_var, *origin));
}
let mut components_str = "strongly connected components:".to_string();
for (scc_idx, reg_vars_origins) in components.iter().enumerate() {
let regions_info = reg_vars_origins.clone().into_iter().collect::<Vec<_>>();
components_str.push_str(&format!(
"{:?}: {:?},\n)",
ConstraintSccIndex::from_usize(scc_idx),
regions_info,
))
}
debug!("{}", components_str);
// calculate the best representative for each component
let components_representatives = components
.into_iter()
.enumerate()
.map(|(scc_idx, region_ctxts)| {
let repr = region_ctxts
.into_iter()
.map(|reg_var_origin| reg_var_origin.1)
.max_by(|x, y| x.preference_value().cmp(&y.preference_value()))
.unwrap();
(ConstraintSccIndex::from_usize(scc_idx), repr)
})
.collect::<FxIndexMap<_, _>>();
let mut scc_node_to_edges = FxIndexMap::default();
for (scc_idx, repr) in components_representatives.iter() {
let edge_representatives = sccs
.successors(*scc_idx)
.iter()
.map(|scc_idx| components_representatives[scc_idx])
.collect::<Vec<_>>();
scc_node_to_edges.insert((scc_idx, repr), edge_representatives);
}
debug!("SCC edges {:#?}", scc_node_to_edges);
}
impl<'tcx> RegionInferenceContext<'tcx> {
/// Creates a new region inference context with a total of
/// `num_region_variables` valid inference variables; the first N
/// of those will be constant regions representing the free
/// regions defined in `universal_regions`.
///
/// The `outlives_constraints` and `type_tests` are an initial set
/// of constraints produced by the MIR type check.
pub(crate) fn new(
infcx: &BorrowckInferCtxt<'tcx>,
var_infos: VarInfos,
universal_regions: Rc<UniversalRegions<'tcx>>,
placeholder_indices: Rc<PlaceholderIndices>,
universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
mut outlives_constraints: OutlivesConstraintSet<'tcx>,
member_constraints_in: MemberConstraintSet<'tcx, RegionVid>,
universe_causes: FxIndexMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
type_tests: Vec<TypeTest<'tcx>>,
liveness_constraints: LivenessValues,
elements: &Rc<DenseLocationMap>,
) -> Self {
debug!("universal_regions: {:#?}", universal_regions);
debug!("outlives constraints: {:#?}", outlives_constraints);
debug!("placeholder_indices: {:#?}", placeholder_indices);
debug!("type tests: {:#?}", type_tests);
// Create a RegionDefinition for each inference variable.
let definitions: IndexVec<_, _> = var_infos
.iter()
.map(|info| RegionDefinition::new(info.universe, info.origin))
.collect();
let constraint_sccs =
outlives_constraints.add_outlives_static(&universal_regions, &definitions);
let constraints = Frozen::freeze(outlives_constraints);
let constraint_graph = Frozen::freeze(constraints.graph(definitions.len()));
if cfg!(debug_assertions) {
sccs_info(infcx, &constraint_sccs);
}
let mut scc_values =
RegionValues::new(elements, universal_regions.len(), &placeholder_indices);
for region in liveness_constraints.regions() {
let scc = constraint_sccs.scc(region);
scc_values.merge_liveness(scc, region, &liveness_constraints);
}
let member_constraints =
Rc::new(member_constraints_in.into_mapped(|r| constraint_sccs.scc(r)));
let mut result = Self {
var_infos,
definitions,
liveness_constraints,
constraints,
constraint_graph,
constraint_sccs,
rev_scc_graph: None,
member_constraints,
member_constraints_applied: Vec::new(),
universe_causes,
scc_values,
type_tests,
universal_regions,
universal_region_relations,
};
result.init_free_and_bound_regions();
result
}
/// Initializes the region variables for each universally
/// quantified region (lifetime parameter). The first N variables
/// always correspond to the regions appearing in the function
/// signature (both named and anonymous) and where-clauses. This
/// function iterates over those regions and initializes them with
/// minimum values.
///
/// For example:
/// ```
/// fn foo<'a, 'b>( /* ... */ ) where 'a: 'b { /* ... */ }
/// ```
/// would initialize two variables like so:
/// ```ignore (illustrative)
/// R0 = { CFG, R0 } // 'a
/// R1 = { CFG, R0, R1 } // 'b
/// ```
/// Here, R0 represents `'a`, and it contains (a) the entire CFG
/// and (b) any universally quantified regions that it outlives,
/// which in this case is just itself. R1 (`'b`) in contrast also
/// outlives `'a` and hence contains R0 and R1.
///
/// This bit of logic also handles invalid universe relations
/// for higher-kinded types.
///
/// We Walk each SCC `A` and `B` such that `A: B`
/// and ensure that universe(A) can see universe(B).
///
/// This serves to enforce the 'empty/placeholder' hierarchy
/// (described in more detail on `RegionKind`):
///
/// ```ignore (illustrative)
/// static -----+
/// | |
/// empty(U0) placeholder(U1)
/// | /
/// empty(U1)
/// ```
///
/// In particular, imagine we have variables R0 in U0 and R1
/// created in U1, and constraints like this;
///
/// ```ignore (illustrative)
/// R1: !1 // R1 outlives the placeholder in U1
/// R1: R0 // R1 outlives R0
/// ```
///
/// Here, we wish for R1 to be `'static`, because it
/// cannot outlive `placeholder(U1)` and `empty(U0)` any other way.
///
/// Thanks to this loop, what happens is that the `R1: R0`
/// constraint has lowered the universe of `R1` to `U0`, which in turn
/// means that the `R1: !1` constraint here will cause
/// `R1` to become `'static`.
fn init_free_and_bound_regions(&mut self) {
// Update the names (if any)
// This iterator has unstable order but we collect it all into an IndexVec
for (external_name, variable) in self.universal_regions.named_universal_regions() {
debug!(
"init_free_and_bound_regions: region {:?} has external name {:?}",
variable, external_name
);
self.definitions[variable].external_name = Some(external_name);
}
for variable in self.definitions.indices() {
let scc = self.constraint_sccs.scc(variable);
match self.definitions[variable].origin {
NllRegionVariableOrigin::FreeRegion => {
// For each free, universally quantified region X:
// Add all nodes in the CFG to liveness constraints
self.liveness_constraints.add_all_points(variable);
self.scc_values.add_all_points(scc);
// Add `end(X)` into the set for X.
self.scc_values.add_element(scc, variable);
}
NllRegionVariableOrigin::Placeholder(placeholder) => {
self.scc_values.add_element(scc, placeholder);
}
NllRegionVariableOrigin::Existential { .. } => {
// For existential, regions, nothing to do.
}
}
}
}
/// Returns an iterator over all the region indices.
pub fn regions(&self) -> impl Iterator<Item = RegionVid> + 'tcx {
self.definitions.indices()
}
/// Given a universal region in scope on the MIR, returns the
/// corresponding index.
///
/// (Panics if `r` is not a registered universal region.)
pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
self.universal_regions.to_region_vid(r)
}
/// Returns an iterator over all the outlives constraints.
pub fn outlives_constraints(&self) -> impl Iterator<Item = OutlivesConstraint<'tcx>> + '_ {
self.constraints.outlives().iter().copied()
}
/// Adds annotations for `#[rustc_regions]`; see `UniversalRegions::annotate`.
pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diag<'_, ()>) {
self.universal_regions.annotate(tcx, err)
}
/// Returns `true` if the region `r` contains the point `p`.
///
/// Panics if called before `solve()` executes,
pub(crate) fn region_contains(&self, r: RegionVid, p: impl ToElementIndex) -> bool {
let scc = self.constraint_sccs.scc(r);
self.scc_values.contains(scc, p)
}
/// Returns the lowest statement index in `start..=end` which is not contained by `r`.
///
/// Panics if called before `solve()` executes.
pub(crate) fn first_non_contained_inclusive(
&self,
r: RegionVid,
block: BasicBlock,
start: usize,
end: usize,
) -> Option<usize> {
let scc = self.constraint_sccs.scc(r);
self.scc_values.first_non_contained_inclusive(scc, block, start, end)
}
/// Returns access to the value of `r` for debugging purposes.
pub(crate) fn region_value_str(&self, r: RegionVid) -> String {
let scc = self.constraint_sccs.scc(r);
self.scc_values.region_value_str(scc)
}
pub(crate) fn placeholders_contained_in<'a>(
&'a self,
r: RegionVid,
) -> impl Iterator<Item = ty::PlaceholderRegion> + 'a {
let scc = self.constraint_sccs.scc(r);
self.scc_values.placeholders_contained_in(scc)
}
/// Returns access to the value of `r` for debugging purposes.
pub(crate) fn region_universe(&self, r: RegionVid) -> ty::UniverseIndex {
self.scc_universe(self.constraint_sccs.scc(r))
}
/// Once region solving has completed, this function will return the member constraints that
/// were applied to the value of a given SCC `scc`. See `AppliedMemberConstraint`.
pub(crate) fn applied_member_constraints(
&self,
scc: ConstraintSccIndex,
) -> &[AppliedMemberConstraint] {
binary_search_util::binary_search_slice(
&self.member_constraints_applied,
|applied| applied.member_region_scc,
&scc,
)
}
/// Performs region inference and report errors if we see any
/// unsatisfiable constraints. If this is a closure, returns the
/// region requirements to propagate to our creator, if any.
#[instrument(skip(self, infcx, body, polonius_output), level = "debug")]
pub(super) fn solve(
&mut self,
infcx: &InferCtxt<'tcx>,
body: &Body<'tcx>,
polonius_output: Option<Rc<PoloniusOutput>>,
) -> (Option<ClosureRegionRequirements<'tcx>>, RegionErrors<'tcx>) {
let mir_def_id = body.source.def_id();
self.propagate_constraints();
let mut errors_buffer = RegionErrors::new(infcx.tcx);
// If this is a closure, we can propagate unsatisfied
// `outlives_requirements` to our creator, so create a vector
// to store those. Otherwise, we'll pass in `None` to the
// functions below, which will trigger them to report errors
// eagerly.
let mut outlives_requirements = infcx.tcx.is_typeck_child(mir_def_id).then(Vec::new);
self.check_type_tests(infcx, outlives_requirements.as_mut(), &mut errors_buffer);
debug!(?errors_buffer);
debug!(?outlives_requirements);
// In Polonius mode, the errors about missing universal region relations are in the output
// and need to be emitted or propagated. Otherwise, we need to check whether the
// constraints were too strong, and if so, emit or propagate those errors.
if infcx.tcx.sess.opts.unstable_opts.polonius.is_legacy_enabled() {
self.check_polonius_subset_errors(
outlives_requirements.as_mut(),
&mut errors_buffer,
polonius_output.expect("Polonius output is unavailable despite `-Z polonius`"),
);
} else {
self.check_universal_regions(outlives_requirements.as_mut(), &mut errors_buffer);
}
debug!(?errors_buffer);
if errors_buffer.is_empty() {
self.check_member_constraints(infcx, &mut errors_buffer);
}
debug!(?errors_buffer);
let outlives_requirements = outlives_requirements.unwrap_or_default();
if outlives_requirements.is_empty() {
(None, errors_buffer)
} else {
let num_external_vids = self.universal_regions.num_global_and_external_regions();
(
Some(ClosureRegionRequirements { num_external_vids, outlives_requirements }),
errors_buffer,
)
}
}
/// Propagate the region constraints: this will grow the values
/// for each region variable until all the constraints are
/// satisfied. Note that some values may grow **too** large to be
/// feasible, but we check this later.
#[instrument(skip(self), level = "debug")]
fn propagate_constraints(&mut self) {
debug!("constraints={:#?}", {
let mut constraints: Vec<_> = self.outlives_constraints().collect();
constraints.sort_by_key(|c| (c.sup, c.sub));
constraints
.into_iter()
.map(|c| (c, self.constraint_sccs.scc(c.sup), self.constraint_sccs.scc(c.sub)))
.collect::<Vec<_>>()
});
// To propagate constraints, we walk the DAG induced by the
// SCC. For each SCC, we visit its successors and compute
// their values, then we union all those values to get our
// own.
for scc in self.constraint_sccs.all_sccs() {
self.compute_value_for_scc(scc);
}
// Sort the applied member constraints so we can binary search
// through them later.
self.member_constraints_applied.sort_by_key(|applied| applied.member_region_scc);
}
/// Computes the value of the SCC `scc_a`, which has not yet been
/// computed, by unioning the values of its successors.
/// Assumes that all successors have been computed already
/// (which is assured by iterating over SCCs in dependency order).
#[instrument(skip(self), level = "debug")]
fn compute_value_for_scc(&mut self, scc_a: ConstraintSccIndex) {
// Walk each SCC `B` such that `A: B`...
for &scc_b in self.constraint_sccs.successors(scc_a) {
debug!(?scc_b);
self.scc_values.add_region(scc_a, scc_b);
}
// Now take member constraints into account.
let member_constraints = self.member_constraints.clone();
for m_c_i in member_constraints.indices(scc_a) {
self.apply_member_constraint(scc_a, m_c_i, member_constraints.choice_regions(m_c_i));
}
debug!(value = ?self.scc_values.region_value_str(scc_a));
}
/// Invoked for each `R0 member of [R1..Rn]` constraint.
///
/// `scc` is the SCC containing R0, and `choice_regions` are the
/// `R1..Rn` regions -- they are always known to be universal
/// regions (and if that's not true, we just don't attempt to
/// enforce the constraint).
///
/// The current value of `scc` at the time the method is invoked
/// is considered a *lower bound*. If possible, we will modify
/// the constraint to set it equal to one of the option regions.
/// If we make any changes, returns true, else false.
///
/// This function only adds the member constraints to the region graph,
/// it does not check them. They are later checked in
/// `check_member_constraints` after the region graph has been computed.
#[instrument(skip(self, member_constraint_index), level = "debug")]
fn apply_member_constraint(
&mut self,
scc: ConstraintSccIndex,
member_constraint_index: NllMemberConstraintIndex,
choice_regions: &[ty::RegionVid],
) {
// Lazily compute the reverse graph, we'll need it later.
self.compute_reverse_scc_graph();
// Create a mutable vector of the options. We'll try to winnow
// them down.
let mut choice_regions: Vec<ty::RegionVid> = choice_regions.to_vec();
// Convert to the SCC representative: sometimes we have inference
// variables in the member constraint that wind up equated with
// universal regions. The scc representative is the minimal numbered
// one from the corresponding scc so it will be the universal region
// if one exists.
for c_r in &mut choice_regions {
let scc = self.constraint_sccs.scc(*c_r);
*c_r = self.scc_representative(scc);
}
// If the member region lives in a higher universe, we currently choose
// the most conservative option by leaving it unchanged.
if !self.constraint_sccs().annotation(scc).min_universe().is_root() {
return;
}
// The existing value for `scc` is a lower-bound. This will
// consist of some set `{P} + {LB}` of points `{P}` and
// lower-bound free regions `{LB}`. As each choice region `O`
// is a free region, it will outlive the points. But we can
// only consider the option `O` if `O: LB`.
choice_regions.retain(|&o_r| {
self.scc_values
.universal_regions_outlived_by(scc)
.all(|lb| self.universal_region_relations.outlives(o_r, lb))
});
debug!(?choice_regions, "after lb");
// Now find all the *upper bounds* -- that is, each UB is a
// free region that must outlive the member region `R0` (`UB:
// R0`). Therefore, we need only keep an option `O` if `UB: O`
// for all UB.
let universal_region_relations = &self.universal_region_relations;
for ub in self.rev_scc_graph.as_ref().unwrap().upper_bounds(scc) {
debug!(?ub);
choice_regions.retain(|&o_r| universal_region_relations.outlives(ub, o_r));
}
debug!(?choice_regions, "after ub");
// At this point we can pick any member of `choice_regions`, but to avoid potential
// non-determinism we will pick the *unique minimum* choice.
//
// Because universal regions are only partially ordered (i.e, not every two regions are
// comparable), we will ignore any region that doesn't compare to all others when picking
// the minimum choice.
// For example, consider `choice_regions = ['static, 'a, 'b, 'c, 'd, 'e]`, where
// `'static: 'a, 'static: 'b, 'a: 'c, 'b: 'c, 'c: 'd, 'c: 'e`.
// `['d, 'e]` are ignored because they do not compare - the same goes for `['a, 'b]`.
let totally_ordered_subset = choice_regions.iter().copied().filter(|&r1| {
choice_regions.iter().all(|&r2| {
self.universal_region_relations.outlives(r1, r2)
|| self.universal_region_relations.outlives(r2, r1)
})
});
// Now we're left with `['static, 'c]`. Pick `'c` as the minimum!
let Some(min_choice) = totally_ordered_subset.reduce(|r1, r2| {
let r1_outlives_r2 = self.universal_region_relations.outlives(r1, r2);
let r2_outlives_r1 = self.universal_region_relations.outlives(r2, r1);
match (r1_outlives_r2, r2_outlives_r1) {
(true, true) => r1.min(r2),
(true, false) => r2,
(false, true) => r1,
(false, false) => bug!("incomparable regions in total order"),
}
}) else {
debug!("no unique minimum choice");
return;
};
let min_choice_scc = self.constraint_sccs.scc(min_choice);
debug!(?min_choice, ?min_choice_scc);
if self.scc_values.add_region(scc, min_choice_scc) {
self.member_constraints_applied.push(AppliedMemberConstraint {
member_region_scc: scc,
min_choice,
member_constraint_index,
});
}
}
/// Returns `true` if all the elements in the value of `scc_b` are nameable
/// in `scc_a`. Used during constraint propagation, and only once
/// the value of `scc_b` has been computed.
fn universe_compatible(&self, scc_b: ConstraintSccIndex, scc_a: ConstraintSccIndex) -> bool {
let a_annotation = self.constraint_sccs().annotation(scc_a);
let b_annotation = self.constraint_sccs().annotation(scc_b);
let a_universe = a_annotation.min_universe();
// If scc_b's declared universe is a subset of
// scc_a's declared universe (typically, both are ROOT), then
// it cannot contain any problematic universe elements.
if a_universe.can_name(b_annotation.min_universe()) {
return true;
}
// Otherwise, there can be no placeholder in `b` with a too high
// universe index to name from `a`.
a_universe.can_name(b_annotation.max_placeholder_universe_reached)
}
/// Once regions have been propagated, this method is used to see
/// whether the "type tests" produced by typeck were satisfied;
/// type tests encode type-outlives relationships like `T:
/// 'a`. See `TypeTest` for more details.
fn check_type_tests(
&self,
infcx: &InferCtxt<'tcx>,
mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
errors_buffer: &mut RegionErrors<'tcx>,
) {
let tcx = infcx.tcx;
// Sometimes we register equivalent type-tests that would
// result in basically the exact same error being reported to
// the user. Avoid that.
let mut deduplicate_errors = FxIndexSet::default();
for type_test in &self.type_tests {
debug!("check_type_test: {:?}", type_test);
let generic_ty = type_test.generic_kind.to_ty(tcx);
if self.eval_verify_bound(
infcx,
generic_ty,
type_test.lower_bound,
&type_test.verify_bound,
) {
continue;
}
if let Some(propagated_outlives_requirements) = &mut propagated_outlives_requirements {
if self.try_promote_type_test(infcx, type_test, propagated_outlives_requirements) {
continue;
}
}
// Type-test failed. Report the error.
let erased_generic_kind = infcx.tcx.erase_regions(type_test.generic_kind);
// Skip duplicate-ish errors.
if deduplicate_errors.insert((
erased_generic_kind,
type_test.lower_bound,
type_test.span,
)) {
debug!(
"check_type_test: reporting error for erased_generic_kind={:?}, \
lower_bound_region={:?}, \
type_test.span={:?}",
erased_generic_kind, type_test.lower_bound, type_test.span,
);
errors_buffer.push(RegionErrorKind::TypeTestError { type_test: type_test.clone() });
}
}
}
/// Invoked when we have some type-test (e.g., `T: 'X`) that we cannot
/// prove to be satisfied. If this is a closure, we will attempt to
/// "promote" this type-test into our `ClosureRegionRequirements` and
/// hence pass it up the creator. To do this, we have to phrase the
/// type-test in terms of external free regions, as local free
/// regions are not nameable by the closure's creator.
///
/// Promotion works as follows: we first check that the type `T`
/// contains only regions that the creator knows about. If this is
/// true, then -- as a consequence -- we know that all regions in
/// the type `T` are free regions that outlive the closure body. If
/// false, then promotion fails.
///
/// Once we've promoted T, we have to "promote" `'X` to some region
/// that is "external" to the closure. Generally speaking, a region
/// may be the union of some points in the closure body as well as
/// various free lifetimes. We can ignore the points in the closure
/// body: if the type T can be expressed in terms of external regions,
/// we know it outlives the points in the closure body. That
/// just leaves the free regions.
///
/// The idea then is to lower the `T: 'X` constraint into multiple
/// bounds -- e.g., if `'X` is the union of two free lifetimes,
/// `'1` and `'2`, then we would create `T: '1` and `T: '2`.
#[instrument(level = "debug", skip(self, infcx, propagated_outlives_requirements))]
fn try_promote_type_test(
&self,
infcx: &InferCtxt<'tcx>,
type_test: &TypeTest<'tcx>,
propagated_outlives_requirements: &mut Vec<ClosureOutlivesRequirement<'tcx>>,
) -> bool {
let tcx = infcx.tcx;
let TypeTest { generic_kind, lower_bound, span: _, verify_bound: _ } = type_test;
let generic_ty = generic_kind.to_ty(tcx);
let Some(subject) = self.try_promote_type_test_subject(infcx, generic_ty) else {
return false;
};
debug!("subject = {:?}", subject);
let r_scc = self.constraint_sccs.scc(*lower_bound);
debug!(
"lower_bound = {:?} r_scc={:?} universe={:?}",
lower_bound,
r_scc,
self.constraint_sccs.annotation(r_scc).min_universe()
);
// If the type test requires that `T: 'a` where `'a` is a
// placeholder from another universe, that effectively requires
// `T: 'static`, so we have to propagate that requirement.
//
// It doesn't matter *what* universe because the promoted `T` will
// always be in the root universe.
if let Some(p) = self.scc_values.placeholders_contained_in(r_scc).next() {
debug!("encountered placeholder in higher universe: {:?}, requiring 'static", p);
let static_r = self.universal_regions.fr_static;
propagated_outlives_requirements.push(ClosureOutlivesRequirement {
subject,
outlived_free_region: static_r,
blame_span: type_test.span,
category: ConstraintCategory::Boring,
});
// we can return here -- the code below might push add'l constraints
// but they would all be weaker than this one.
return true;
}