-
Notifications
You must be signed in to change notification settings - Fork 13.1k
/
Copy pathwf.rs
527 lines (480 loc) · 22.5 KB
/
wf.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use hir::def_id::DefId;
use mir::interpret::ConstValue;
use infer::InferCtxt;
use ty::subst::Substs;
use traits;
use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
use std::iter::once;
use syntax::ast;
use syntax_pos::Span;
use middle::lang_items;
/// Returns the set of obligations needed to make `ty` well-formed.
/// If `ty` contains unresolved inference variables, this may include
/// further WF obligations. However, if `ty` IS an unresolved
/// inference variable, returns `None`, because we are not able to
/// make any progress at all. This is to prevent "livelock" where we
/// say "$0 is WF if $0 is WF".
pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: ast::NodeId,
ty: Ty<'tcx>,
span: Span)
-> Option<Vec<traits::PredicateObligation<'tcx>>>
{
let mut wf = WfPredicates { infcx,
param_env,
body_id,
span,
out: vec![] };
if wf.compute(ty) {
debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
let result = wf.normalize();
debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
Some(result)
} else {
None // no progress made, return None
}
}
/// Returns the obligations that make this trait reference
/// well-formed. For example, if there is a trait `Set` defined like
/// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
/// if `Bar: Eq`.
pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: ast::NodeId,
trait_ref: &ty::TraitRef<'tcx>,
span: Span)
-> Vec<traits::PredicateObligation<'tcx>>
{
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
wf.compute_trait_ref(trait_ref, Elaborate::All);
wf.normalize()
}
pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: ast::NodeId,
predicate: &ty::Predicate<'tcx>,
span: Span)
-> Vec<traits::PredicateObligation<'tcx>>
{
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
// (*) ok to skip binders, because wf code is prepared for it
match *predicate {
ty::Predicate::Trait(ref t) => {
wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
}
ty::Predicate::RegionOutlives(..) => {
}
ty::Predicate::TypeOutlives(ref t) => {
wf.compute(t.skip_binder().0);
}
ty::Predicate::Projection(ref t) => {
let t = t.skip_binder(); // (*)
wf.compute_projection(t.projection_ty);
wf.compute(t.ty);
}
ty::Predicate::WellFormed(t) => {
wf.compute(t);
}
ty::Predicate::ObjectSafe(_) => {
}
ty::Predicate::ClosureKind(..) => {
}
ty::Predicate::Subtype(ref data) => {
wf.compute(data.skip_binder().a); // (*)
wf.compute(data.skip_binder().b); // (*)
}
ty::Predicate::ConstEvaluatable(def_id, substs) => {
let obligations = wf.nominal_obligations(def_id, substs);
wf.out.extend(obligations);
for ty in substs.types() {
wf.compute(ty);
}
}
}
wf.normalize()
}
struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: ast::NodeId,
span: Span,
out: Vec<traits::PredicateObligation<'tcx>>,
}
/// Controls whether we "elaborate" supertraits and so forth on the WF
/// predicates. This is a kind of hack to address #43784. The
/// underlying problem in that issue was a trait structure like:
///
/// ```
/// trait Foo: Copy { }
/// trait Bar: Foo { }
/// impl<T: Bar> Foo for T { }
/// impl<T> Bar for T { }
/// ```
///
/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
/// we decide that this is true because `T: Bar` is in the
/// where-clauses (and we can elaborate that to include `T:
/// Copy`). This wouldn't be a problem, except that when we check the
/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
/// impl. And so nowhere did we check that `T: Copy` holds!
///
/// To resolve this, we elaborate the WF requirements that must be
/// proven when checking impls. This means that (e.g.) the `impl Bar
/// for T` will be forced to prove not only that `T: Foo` but also `T:
/// Copy` (which it won't be able to do, because there is no `Copy`
/// impl for `T`).
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum Elaborate {
All,
None,
}
impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
traits::ObligationCause::new(self.span, self.body_id, code)
}
fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
let cause = self.cause(traits::MiscObligation);
let infcx = &mut self.infcx;
let param_env = self.param_env;
self.out.iter()
.inspect(|pred| assert!(!pred.has_escaping_regions()))
.flat_map(|pred| {
let mut selcx = traits::SelectionContext::new(infcx);
let pred = traits::normalize(&mut selcx, param_env, cause.clone(), pred);
once(pred.value).chain(pred.obligations)
})
.collect()
}
/// Pushes the obligations required for `trait_ref` to be WF into
/// `self.out`.
fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
let cause = self.cause(traits::MiscObligation);
let param_env = self.param_env;
if let Elaborate::All = elaborate {
let predicates = obligations.iter()
.map(|obligation| obligation.predicate.clone())
.collect();
let implied_obligations = traits::elaborate_predicates(self.infcx.tcx, predicates);
let implied_obligations = implied_obligations.map(|pred| {
traits::Obligation::new(cause.clone(), param_env, pred)
});
self.out.extend(implied_obligations);
}
self.out.extend(obligations);
self.out.extend(
trait_ref.substs.types()
.filter(|ty| !ty.has_escaping_regions())
.map(|ty| traits::Obligation::new(cause.clone(),
param_env,
ty::Predicate::WellFormed(ty))));
}
/// Pushes the obligations required for `trait_ref::Item` to be WF
/// into `self.out`.
fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
// A projection is well-formed if (a) the trait ref itself is
// WF and (b) the trait-ref holds. (It may also be
// normalizable and be WF that way.)
let trait_ref = data.trait_ref(self.infcx.tcx);
self.compute_trait_ref(&trait_ref, Elaborate::None);
if !data.has_escaping_regions() {
let predicate = trait_ref.to_predicate();
let cause = self.cause(traits::ProjectionWf(data));
self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
}
}
/// Pushes the obligations required for a constant value to be WF
/// into `self.out`.
fn compute_const(&mut self, constant: &'tcx ty::Const<'tcx>) {
self.require_sized(constant.ty, traits::ConstSized);
if let ConstValue::Unevaluated(def_id, substs) = constant.val {
let obligations = self.nominal_obligations(def_id, substs);
self.out.extend(obligations);
let predicate = ty::Predicate::ConstEvaluatable(def_id, substs);
let cause = self.cause(traits::MiscObligation);
self.out.push(traits::Obligation::new(cause,
self.param_env,
predicate));
}
}
fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
if !subty.has_escaping_regions() {
let cause = self.cause(cause);
let trait_ref = ty::TraitRef {
def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
};
self.out.push(traits::Obligation::new(cause, self.param_env, trait_ref.to_predicate()));
}
}
/// Push new obligations into `out`. Returns true if it was able
/// to generate all the predicates needed to validate that `ty0`
/// is WF. Returns false if `ty0` is an unresolved type variable,
/// in which case we are not able to simplify at all.
fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
let mut subtys = ty0.walk();
let param_env = self.param_env;
while let Some(ty) = subtys.next() {
match ty.sty {
ty::TyBool |
ty::TyChar |
ty::TyInt(..) |
ty::TyUint(..) |
ty::TyFloat(..) |
ty::TyError |
ty::TyStr |
ty::TyGeneratorWitness(..) |
ty::TyNever |
ty::TyParam(_) |
ty::TyForeign(..) => {
// WfScalar, WfParameter, etc
}
ty::TySlice(subty) => {
self.require_sized(subty, traits::SliceOrArrayElem);
}
ty::TyArray(subty, len) => {
self.require_sized(subty, traits::SliceOrArrayElem);
assert_eq!(len.ty, self.infcx.tcx.types.usize);
self.compute_const(len);
}
ty::TyTuple(ref tys) => {
if let Some((_last, rest)) = tys.split_last() {
for elem in rest {
self.require_sized(elem, traits::TupleElem);
}
}
}
ty::TyRawPtr(_) => {
// simple cases that are WF if their type args are WF
}
ty::TyProjection(data) => {
subtys.skip_current_subtree(); // subtree handled by compute_projection
self.compute_projection(data);
}
ty::TyAdt(def, substs) => {
// WfNominalType
let obligations = self.nominal_obligations(def.did, substs);
self.out.extend(obligations);
}
ty::TyRef(r, rty, _) => {
// WfReference
if !r.has_escaping_regions() && !rty.has_escaping_regions() {
let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
self.out.push(
traits::Obligation::new(
cause,
param_env,
ty::Predicate::TypeOutlives(
ty::Binder::dummy(
ty::OutlivesPredicate(rty, r)))));
}
}
ty::TyGenerator(..) => {
// Walk ALL the types in the generator: this will
// include the upvar types as well as the yield
// type. Note that this is mildly distinct from
// the closure case, where we have to be careful
// about the signature of the closure. We don't
// have the problem of implied bounds here since
// generators don't take arguments.
}
ty::TyClosure(def_id, substs) => {
// Only check the upvar types for WF, not the rest
// of the types within. This is needed because we
// capture the signature and it may not be WF
// without the implied bounds. Consider a closure
// like `|x: &'a T|` -- it may be that `T: 'a` is
// not known to hold in the creator's context (and
// indeed the closure may not be invoked by its
// creator, but rather turned to someone who *can*
// verify that).
//
// The special treatment of closures here really
// ought not to be necessary either; the problem
// is related to #25860 -- there is no way for us
// to express a fn type complete with the implied
// bounds that it is assuming. I think in reality
// the WF rules around fn are a bit messed up, and
// that is the rot problem: `fn(&'a T)` should
// probably always be WF, because it should be
// shorthand for something like `where(T: 'a) {
// fn(&'a T) }`, as discussed in #25860.
//
// Note that we are also skipping the generic
// types. This is consistent with the `outlives`
// code, but anyway doesn't matter: within the fn
// body where they are created, the generics will
// always be WF, and outside of that fn body we
// are not directly inspecting closure types
// anyway, except via auto trait matching (which
// only inspects the upvar types).
subtys.skip_current_subtree(); // subtree handled by compute_projection
for upvar_ty in substs.upvar_tys(def_id, self.infcx.tcx) {
self.compute(upvar_ty);
}
}
ty::TyFnDef(..) | ty::TyFnPtr(_) => {
// let the loop iterate into the argument/return
// types appearing in the fn signature
}
ty::TyAnon(..) => {
// all of the requirements on type parameters
// should've been checked by the instantiation
// of whatever returned this exact `impl Trait`.
}
ty::TyDynamic(data, r) => {
// WfObject
//
// Here, we defer WF checking due to higher-ranked
// regions. This is perhaps not ideal.
self.from_object_ty(ty, data, r);
// FIXME(#27579) RFC also considers adding trait
// obligations that don't refer to Self and
// checking those
let cause = self.cause(traits::MiscObligation);
let component_traits =
data.auto_traits().chain(data.principal().map(|p| p.def_id()));
self.out.extend(
component_traits.map(|did| traits::Obligation::new(
cause.clone(),
param_env,
ty::Predicate::ObjectSafe(did)
))
);
}
// Inference variables are the complicated case, since we don't
// know what type they are. We do two things:
//
// 1. Check if they have been resolved, and if so proceed with
// THAT type.
// 2. If not, check whether this is the type that we
// started with (ty0). In that case, we've made no
// progress at all, so return false. Otherwise,
// we've at least simplified things (i.e., we went
// from `Vec<$0>: WF` to `$0: WF`, so we can
// register a pending obligation and keep
// moving. (Goal is that an "inductive hypothesis"
// is satisfied to ensure termination.)
ty::TyInfer(_) => {
let ty = self.infcx.shallow_resolve(ty);
if let ty::TyInfer(_) = ty.sty { // not yet resolved...
if ty == ty0 { // ...this is the type we started from! no progress.
return false;
}
let cause = self.cause(traits::MiscObligation);
self.out.push( // ...not the type we started from, so we made progress.
traits::Obligation::new(cause,
self.param_env,
ty::Predicate::WellFormed(ty)));
} else {
// Yes, resolved, proceed with the
// result. Should never return false because
// `ty` is not a TyInfer.
assert!(self.compute(ty));
}
}
}
}
// if we made it through that loop above, we made progress!
return true;
}
fn nominal_obligations(&mut self,
def_id: DefId,
substs: &Substs<'tcx>)
-> Vec<traits::PredicateObligation<'tcx>>
{
let predicates =
self.infcx.tcx.predicates_of(def_id)
.instantiate(self.infcx.tcx, substs);
let cause = self.cause(traits::ItemObligation(def_id));
predicates.predicates
.into_iter()
.map(|pred| traits::Obligation::new(cause.clone(),
self.param_env,
pred))
.filter(|pred| !pred.has_escaping_regions())
.collect()
}
fn from_object_ty(&mut self, ty: Ty<'tcx>,
data: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>,
region: ty::Region<'tcx>) {
// Imagine a type like this:
//
// trait Foo { }
// trait Bar<'c> : 'c { }
//
// &'b (Foo+'c+Bar<'d>)
// ^
//
// In this case, the following relationships must hold:
//
// 'b <= 'c
// 'd <= 'c
//
// The first conditions is due to the normal region pointer
// rules, which say that a reference cannot outlive its
// referent.
//
// The final condition may be a bit surprising. In particular,
// you may expect that it would have been `'c <= 'd`, since
// usually lifetimes of outer things are conservative
// approximations for inner things. However, it works somewhat
// differently with trait objects: here the idea is that if the
// user specifies a region bound (`'c`, in this case) it is the
// "master bound" that *implies* that bounds from other traits are
// all met. (Remember that *all bounds* in a type like
// `Foo+Bar+Zed` must be met, not just one, hence if we write
// `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
// 'y.)
//
// Note: in fact we only permit builtin traits, not `Bar<'d>`, I
// am looking forward to the future here.
if !data.has_escaping_regions() {
let implicit_bounds =
object_region_bounds(self.infcx.tcx, data);
let explicit_bound = region;
for implicit_bound in implicit_bounds {
let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
let outlives = ty::Binder::dummy(
ty::OutlivesPredicate(explicit_bound, implicit_bound));
self.out.push(traits::Obligation::new(cause,
self.param_env,
outlives.to_predicate()));
}
}
}
}
/// Given an object type like `SomeTrait+Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `ty::required_region_bounds`, see that for more information.
pub fn object_region_bounds<'a, 'gcx, 'tcx>(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
existential_predicates: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>)
-> Vec<ty::Region<'tcx>>
{
// Since we don't actually *know* the self type for an object,
// this "open(err)" serves as a kind of dummy standin -- basically
// a skolemized type.
let open_ty = tcx.mk_infer(ty::FreshTy(0));
let predicates = existential_predicates.iter().filter_map(|predicate| {
if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
None
} else {
Some(predicate.with_self_ty(tcx, open_ty))
}
}).collect();
tcx.required_region_bounds(open_ty, predicates)
}