-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
binary_heap.rs
699 lines (637 loc) · 21.4 KB
/
binary_heap.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A priority queue implemented with a binary heap.
//!
//! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest
//! element is `O(1)`. Converting a vector to a binary heap can be done in-place, and has `O(n)`
//! complexity. A binary heap can also be converted to a sorted vector in-place, allowing it to
//! be used for an `O(n log n)` in-place heapsort.
//!
//! # Examples
//!
//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
//! It shows how to use `BinaryHeap` with custom types.
//!
//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
//!
//! ```
//! use std::cmp::Ordering;
//! use std::collections::BinaryHeap;
//! use std::usize;
//!
//! #[derive(Copy, Clone, Eq, PartialEq)]
//! struct State {
//! cost: usize,
//! position: usize,
//! }
//!
//! // The priority queue depends on `Ord`.
//! // Explicitly implement the trait so the queue becomes a min-heap
//! // instead of a max-heap.
//! impl Ord for State {
//! fn cmp(&self, other: &State) -> Ordering {
//! // Notice that the we flip the ordering here
//! other.cost.cmp(&self.cost)
//! }
//! }
//!
//! // `PartialOrd` needs to be implemented as well.
//! impl PartialOrd for State {
//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
//! Some(self.cmp(other))
//! }
//! }
//!
//! // Each node is represented as an `usize`, for a shorter implementation.
//! struct Edge {
//! node: usize,
//! cost: usize,
//! }
//!
//! // Dijkstra's shortest path algorithm.
//!
//! // Start at `start` and use `dist` to track the current shortest distance
//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
//! // for a simpler implementation.
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> usize {
//! // dist[node] = current shortest distance from `start` to `node`
//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
//!
//! let mut heap = BinaryHeap::new();
//!
//! // We're at `start`, with a zero cost
//! dist[start] = 0;
//! heap.push(State { cost: 0, position: start });
//!
//! // Examine the frontier with lower cost nodes first (min-heap)
//! while let Some(State { cost, position }) = heap.pop() {
//! // Alternatively we could have continued to find all shortest paths
//! if position == goal { return cost; }
//!
//! // Important as we may have already found a better way
//! if cost > dist[position] { continue; }
//!
//! // For each node we can reach, see if we can find a way with
//! // a lower cost going through this node
//! for edge in adj_list[position].iter() {
//! let next = State { cost: cost + edge.cost, position: edge.node };
//!
//! // If so, add it to the frontier and continue
//! if next.cost < dist[next.position] {
//! heap.push(next);
//! // Relaxation, we have now found a better way
//! dist[next.position] = next.cost;
//! }
//! }
//! }
//!
//! // Goal not reachable
//! usize::MAX
//! }
//!
//! fn main() {
//! // This is the directed graph we're going to use.
//! // The node numbers correspond to the different states,
//! // and the edge weights symbolize the cost of moving
//! // from one node to another.
//! // Note that the edges are one-way.
//! //
//! // 7
//! // +-----------------+
//! // | |
//! // v 1 2 |
//! // 0 -----> 1 -----> 3 ---> 4
//! // | ^ ^ ^
//! // | | 1 | |
//! // | | | 3 | 1
//! // +------> 2 -------+ |
//! // 10 | |
//! // +---------------+
//! //
//! // The graph is represented as an adjacency list where each index,
//! // corresponding to a node value, has a list of outgoing edges.
//! // Chosen for its efficiency.
//! let graph = vec![
//! // Node 0
//! vec![Edge { node: 2, cost: 10 },
//! Edge { node: 1, cost: 1 }],
//! // Node 1
//! vec![Edge { node: 3, cost: 2 }],
//! // Node 2
//! vec![Edge { node: 1, cost: 1 },
//! Edge { node: 3, cost: 3 },
//! Edge { node: 4, cost: 1 }],
//! // Node 3
//! vec![Edge { node: 0, cost: 7 },
//! Edge { node: 4, cost: 2 }],
//! // Node 4
//! vec![]];
//!
//! assert_eq!(shortest_path(&graph, 0, 1), 1);
//! assert_eq!(shortest_path(&graph, 0, 3), 3);
//! assert_eq!(shortest_path(&graph, 3, 0), 7);
//! assert_eq!(shortest_path(&graph, 0, 4), 5);
//! assert_eq!(shortest_path(&graph, 4, 0), usize::MAX);
//! }
//! ```
#![allow(missing_docs)]
#![stable(feature = "rust1", since = "1.0.0")]
use core::prelude::*;
use core::iter::{FromIterator};
use core::mem::{zeroed, replace, swap};
use core::ptr;
use slice;
use vec::{self, Vec};
/// A priority queue implemented with a binary heap.
///
/// This will be a max-heap.
///
/// It is a logic error for an item to be modified in such a way that the
/// item's ordering relative to any other item, as determined by the `Ord`
/// trait, changes while it is in the heap. This is normally only possible
/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct BinaryHeap<T> {
data: Vec<T>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Default for BinaryHeap<T> {
#[inline]
fn default() -> BinaryHeap<T> { BinaryHeap::new() }
}
impl<T: Ord> BinaryHeap<T> {
/// Creates an empty `BinaryHeap` as a max-heap.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::new();
/// heap.push(4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> BinaryHeap<T> { BinaryHeap { data: vec![] } }
/// Creates an empty `BinaryHeap` with a specific capacity.
/// This preallocates enough memory for `capacity` elements,
/// so that the `BinaryHeap` does not have to be reallocated
/// until it contains at least that many values.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::with_capacity(10);
/// heap.push(4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
BinaryHeap { data: Vec::with_capacity(capacity) }
}
/// Creates a `BinaryHeap` from a vector. This is sometimes called
/// `heapifying` the vector.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
/// let heap = BinaryHeap::from_vec(vec![9, 1, 2, 7, 3, 2]);
/// ```
pub fn from_vec(vec: Vec<T>) -> BinaryHeap<T> {
let mut heap = BinaryHeap { data: vec };
let mut n = heap.len() / 2;
while n > 0 {
n -= 1;
heap.sift_down(n);
}
heap
}
/// Returns an iterator visiting all values in the underlying vector, in
/// arbitrary order.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
/// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4]);
///
/// // Print 1, 2, 3, 4 in arbitrary order
/// for x in heap.iter() {
/// println!("{}", x);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter { iter: self.data.iter() }
}
/// Returns the greatest item in the binary heap, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::new();
/// assert_eq!(heap.peek(), None);
///
/// heap.push(1);
/// heap.push(5);
/// heap.push(2);
/// assert_eq!(heap.peek(), Some(&5));
///
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn peek(&self) -> Option<&T> {
self.data.get(0)
}
/// Returns the number of elements the binary heap can hold without reallocating.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::with_capacity(100);
/// assert!(heap.capacity() >= 100);
/// heap.push(4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn capacity(&self) -> usize { self.data.capacity() }
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
/// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
/// insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::new();
/// heap.reserve_exact(100);
/// assert!(heap.capacity() >= 100);
/// heap.push(4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve_exact(&mut self, additional: usize) {
self.data.reserve_exact(additional);
}
/// Reserves capacity for at least `additional` more elements to be inserted in the
/// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::new();
/// heap.reserve(100);
/// assert!(heap.capacity() >= 100);
/// heap.push(4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve(&mut self, additional: usize) {
self.data.reserve(additional);
}
/// Discards as much additional capacity as possible.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn shrink_to_fit(&mut self) {
self.data.shrink_to_fit();
}
/// Removes the greatest item from the binary heap and returns it, or `None` if it
/// is empty.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::from_vec(vec![1, 3]);
///
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop(&mut self) -> Option<T> {
self.data.pop().map(|mut item| {
if !self.is_empty() {
swap(&mut item, &mut self.data[0]);
self.sift_down(0);
}
item
})
}
/// Pushes an item onto the binary heap.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::new();
/// heap.push(3);
/// heap.push(5);
/// heap.push(1);
///
/// assert_eq!(heap.len(), 3);
/// assert_eq!(heap.peek(), Some(&5));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push(&mut self, item: T) {
let old_len = self.len();
self.data.push(item);
self.sift_up(0, old_len);
}
/// Pushes an item onto the binary heap, then pops the greatest item off the queue in
/// an optimized fashion.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::new();
/// heap.push(1);
/// heap.push(5);
///
/// assert_eq!(heap.push_pop(3), 5);
/// assert_eq!(heap.push_pop(9), 9);
/// assert_eq!(heap.len(), 2);
/// assert_eq!(heap.peek(), Some(&3));
/// ```
pub fn push_pop(&mut self, mut item: T) -> T {
match self.data.get_mut(0) {
None => return item,
Some(top) => if *top > item {
swap(&mut item, top);
} else {
return item;
},
}
self.sift_down(0);
item
}
/// Pops the greatest item off the binary heap, then pushes an item onto the queue in
/// an optimized fashion. The push is done regardless of whether the binary heap
/// was empty.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
/// let mut heap = BinaryHeap::new();
///
/// assert_eq!(heap.replace(1), None);
/// assert_eq!(heap.replace(3), Some(1));
/// assert_eq!(heap.len(), 1);
/// assert_eq!(heap.peek(), Some(&3));
/// ```
pub fn replace(&mut self, mut item: T) -> Option<T> {
if !self.is_empty() {
swap(&mut item, &mut self.data[0]);
self.sift_down(0);
Some(item)
} else {
self.push(item);
None
}
}
/// Consumes the `BinaryHeap` and returns the underlying vector
/// in arbitrary order.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
/// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4, 5, 6, 7]);
/// let vec = heap.into_vec();
///
/// // Will print in some order
/// for x in vec.iter() {
/// println!("{}", x);
/// }
/// ```
pub fn into_vec(self) -> Vec<T> { self.data }
/// Consumes the `BinaryHeap` and returns a vector in sorted
/// (ascending) order.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::from_vec(vec![1, 2, 4, 5, 7]);
/// heap.push(6);
/// heap.push(3);
///
/// let vec = heap.into_sorted_vec();
/// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
/// ```
pub fn into_sorted_vec(mut self) -> Vec<T> {
let mut end = self.len();
while end > 1 {
end -= 1;
self.data.swap(0, end);
self.sift_down_range(0, end);
}
self.into_vec()
}
// The implementations of sift_up and sift_down use unsafe blocks in
// order to move an element out of the vector (leaving behind a
// zeroed element), shift along the others and move it back into the
// vector over the junk element. This reduces the constant factor
// compared to using swaps, which involves twice as many moves.
fn sift_up(&mut self, start: usize, mut pos: usize) {
unsafe {
let new = replace(&mut self.data[pos], zeroed());
while pos > start {
let parent = (pos - 1) >> 1;
if new <= self.data[parent] { break; }
let x = replace(&mut self.data[parent], zeroed());
ptr::write(&mut self.data[pos], x);
pos = parent;
}
ptr::write(&mut self.data[pos], new);
}
}
fn sift_down_range(&mut self, mut pos: usize, end: usize) {
unsafe {
let start = pos;
let new = replace(&mut self.data[pos], zeroed());
let mut child = 2 * pos + 1;
while child < end {
let right = child + 1;
if right < end && !(self.data[child] > self.data[right]) {
child = right;
}
let x = replace(&mut self.data[child], zeroed());
ptr::write(&mut self.data[pos], x);
pos = child;
child = 2 * pos + 1;
}
ptr::write(&mut self.data[pos], new);
self.sift_up(start, pos);
}
}
fn sift_down(&mut self, pos: usize) {
let len = self.len();
self.sift_down_range(pos, len);
}
/// Returns the length of the binary heap.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn len(&self) -> usize { self.data.len() }
/// Checks if the binary heap is empty.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Clears the binary heap, returning an iterator over the removed elements.
///
/// The elements are removed in arbitrary order.
#[inline]
#[unstable(feature = "collections",
reason = "matches collection reform specification, waiting for dust to settle")]
pub fn drain(&mut self) -> Drain<T> {
Drain { iter: self.data.drain(..) }
}
/// Drops all items from the binary heap.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) { self.drain(); }
}
/// `BinaryHeap` iterator.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter <'a, T: 'a> {
iter: slice::Iter<'a, T>,
}
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Iter<'a, T> {
Iter { iter: self.iter.clone() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
/// An iterator that moves out of a `BinaryHeap`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> {
iter: vec::IntoIter<T>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> { self.iter.next() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
#[inline]
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {}
/// An iterator that drains a `BinaryHeap`.
#[unstable(feature = "collections", reason = "recent addition")]
pub struct Drain<'a, T: 'a> {
iter: vec::Drain<'a, T>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> Iterator for Drain<'a, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> { self.iter.next() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> BinaryHeap<T> {
BinaryHeap::from_vec(iter.into_iter().collect())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> IntoIterator for BinaryHeap<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Creates a consuming iterator, that is, one that moves each value out of
/// the binary heap in arbitrary order. The binary heap cannot be used
/// after calling this.
///
/// # Examples
///
/// ```
/// # #![feature(collections)]
/// use std::collections::BinaryHeap;
/// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4]);
///
/// // Print 1, 2, 3, 4 in arbitrary order
/// for x in heap.into_iter() {
/// // x has type i32, not &i32
/// println!("{}", x);
/// }
/// ```
fn into_iter(self) -> IntoIter<T> {
IntoIter { iter: self.data.into_iter() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a BinaryHeap<T> where T: Ord {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Extend<T> for BinaryHeap<T> {
fn extend<I: IntoIterator<Item=T>>(&mut self, iterable: I) {
let iter = iterable.into_iter();
let (lower, _) = iter.size_hint();
self.reserve(lower);
for elem in iter {
self.push(elem);
}
}
}