-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
mod.rs
2262 lines (2011 loc) · 68.9 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust HIR.
pub use self::BinOp_::*;
pub use self::BlockCheckMode::*;
pub use self::CaptureClause::*;
pub use self::Decl_::*;
pub use self::Expr_::*;
pub use self::FunctionRetTy::*;
pub use self::ForeignItem_::*;
pub use self::Item_::*;
pub use self::Mutability::*;
pub use self::PrimTy::*;
pub use self::Stmt_::*;
pub use self::Ty_::*;
pub use self::TyParamBound::*;
pub use self::UnOp::*;
pub use self::UnsafeSource::*;
pub use self::Visibility::{Public, Inherited};
use hir::def::Def;
use hir::def_id::{DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX};
use util::nodemap::{NodeMap, FxHashSet};
use mir::mono::Linkage;
use syntax_pos::{Span, DUMMY_SP};
use syntax::codemap::{self, Spanned};
use syntax::abi::Abi;
use syntax::ast::{self, Name, NodeId, DUMMY_NODE_ID, AsmDialect};
use syntax::ast::{Attribute, Lit, StrStyle, FloatTy, IntTy, UintTy, MetaItem};
use syntax::attr::InlineAttr;
use syntax::ext::hygiene::SyntaxContext;
use syntax::ptr::P;
use syntax::symbol::{Symbol, keywords};
use syntax::tokenstream::TokenStream;
use syntax::util::ThinVec;
use syntax::util::parser::ExprPrecedence;
use ty::AdtKind;
use ty::maps::Providers;
use rustc_data_structures::indexed_vec;
use serialize::{self, Encoder, Encodable, Decoder, Decodable};
use std::collections::BTreeMap;
use std::fmt;
use std::iter;
use std::slice;
/// HIR doesn't commit to a concrete storage type and has its own alias for a vector.
/// It can be `Vec`, `P<[T]>` or potentially `Box<[T]>`, or some other container with similar
/// behavior. Unlike AST, HIR is mostly a static structure, so we can use an owned slice instead
/// of `Vec` to avoid keeping extra capacity.
pub type HirVec<T> = P<[T]>;
macro_rules! hir_vec {
($elem:expr; $n:expr) => (
$crate::hir::HirVec::from(vec![$elem; $n])
);
($($x:expr),*) => (
$crate::hir::HirVec::from(vec![$($x),*])
);
($($x:expr,)*) => (hir_vec![$($x),*])
}
pub mod check_attr;
pub mod def;
pub mod def_id;
pub mod intravisit;
pub mod itemlikevisit;
pub mod lowering;
pub mod map;
pub mod pat_util;
pub mod print;
pub mod svh;
/// A HirId uniquely identifies a node in the HIR of the current crate. It is
/// composed of the `owner`, which is the DefIndex of the directly enclosing
/// hir::Item, hir::TraitItem, or hir::ImplItem (i.e. the closest "item-like"),
/// and the `local_id` which is unique within the given owner.
///
/// This two-level structure makes for more stable values: One can move an item
/// around within the source code, or add or remove stuff before it, without
/// the local_id part of the HirId changing, which is a very useful property in
/// incremental compilation where we have to persist things through changes to
/// the code base.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
pub struct HirId {
pub owner: DefIndex,
pub local_id: ItemLocalId,
}
impl HirId {
pub fn owner_def_id(self) -> DefId {
DefId::local(self.owner)
}
pub fn owner_local_def_id(self) -> LocalDefId {
LocalDefId::from_def_id(DefId::local(self.owner))
}
}
impl serialize::UseSpecializedEncodable for HirId {
fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
let HirId {
owner,
local_id,
} = *self;
owner.encode(s)?;
local_id.encode(s)
}
}
impl serialize::UseSpecializedDecodable for HirId {
fn default_decode<D: Decoder>(d: &mut D) -> Result<HirId, D::Error> {
let owner = DefIndex::decode(d)?;
let local_id = ItemLocalId::decode(d)?;
Ok(HirId {
owner,
local_id
})
}
}
/// An `ItemLocalId` uniquely identifies something within a given "item-like",
/// that is within a hir::Item, hir::TraitItem, or hir::ImplItem. There is no
/// guarantee that the numerical value of a given `ItemLocalId` corresponds to
/// the node's position within the owning item in any way, but there is a
/// guarantee that the `LocalItemId`s within an owner occupy a dense range of
/// integers starting at zero, so a mapping that maps all or most nodes within
/// an "item-like" to something else can be implement by a `Vec` instead of a
/// tree or hash map.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug,
RustcEncodable, RustcDecodable)]
pub struct ItemLocalId(pub u32);
impl ItemLocalId {
pub fn as_usize(&self) -> usize {
self.0 as usize
}
}
impl indexed_vec::Idx for ItemLocalId {
fn new(idx: usize) -> Self {
debug_assert!((idx as u32) as usize == idx);
ItemLocalId(idx as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
/// The `HirId` corresponding to CRATE_NODE_ID and CRATE_DEF_INDEX
pub const CRATE_HIR_ID: HirId = HirId {
owner: CRATE_DEF_INDEX,
local_id: ItemLocalId(0)
};
pub const DUMMY_HIR_ID: HirId = HirId {
owner: CRATE_DEF_INDEX,
local_id: DUMMY_ITEM_LOCAL_ID,
};
pub const DUMMY_ITEM_LOCAL_ID: ItemLocalId = ItemLocalId(!0);
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Label {
pub name: Name,
pub span: Span,
}
impl fmt::Debug for Label {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "label({:?})", self.name)
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Lifetime {
pub id: NodeId,
pub span: Span,
/// Either "'a", referring to a named lifetime definition,
/// or "" (aka keywords::Invalid), for elision placeholders.
///
/// HIR lowering inserts these placeholders in type paths that
/// refer to type definitions needing lifetime parameters,
/// `&T` and `&mut T`, and trait objects without `... + 'a`.
pub name: LifetimeName,
}
#[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub enum LifetimeName {
Implicit,
Underscore,
Static,
Name(Name),
}
impl LifetimeName {
pub fn name(&self) -> Name {
use self::LifetimeName::*;
match *self {
Implicit => keywords::Invalid.name(),
Underscore => keywords::UnderscoreLifetime.name(),
Static => keywords::StaticLifetime.name(),
Name(name) => name,
}
}
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f,
"lifetime({}: {})",
self.id,
print::to_string(print::NO_ANN, |s| s.print_lifetime(self)))
}
}
impl Lifetime {
pub fn is_elided(&self) -> bool {
use self::LifetimeName::*;
match self.name {
Implicit | Underscore => true,
Static | Name(_) => false,
}
}
pub fn is_static(&self) -> bool {
self.name == LifetimeName::Static
}
}
/// A lifetime definition, eg `'a: 'b+'c+'d`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct LifetimeDef {
pub lifetime: Lifetime,
pub bounds: HirVec<Lifetime>,
pub pure_wrt_drop: bool,
// Indicates that the lifetime definition was synthetically added
// as a result of an in-band lifetime usage like
// `fn foo(x: &'a u8) -> &'a u8 { x }`
pub in_band: bool,
}
/// A "Path" is essentially Rust's notion of a name; for instance:
/// `std::cmp::PartialEq`. It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Path {
pub span: Span,
/// The definition that the path resolved to.
pub def: Def,
/// The segments in the path: the things separated by `::`.
pub segments: HirVec<PathSegment>,
}
impl Path {
pub fn is_global(&self) -> bool {
!self.segments.is_empty() && self.segments[0].name == keywords::CrateRoot.name()
}
}
impl fmt::Debug for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "path({})", print::to_string(print::NO_ANN, |s| s.print_path(self, false)))
}
}
impl fmt::Display for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", print::to_string(print::NO_ANN, |s| s.print_path(self, false)))
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub name: Name,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
/// this is more than just simple syntactic sugar; the use of
/// parens affects the region binding rules, so we preserve the
/// distinction.
pub parameters: Option<P<PathParameters>>,
/// Whether to infer remaining type parameters, if any.
/// This only applies to expression and pattern paths, and
/// out of those only the segments with no type parameters
/// to begin with, e.g. `Vec::new` is `<Vec<..>>::new::<..>`.
pub infer_types: bool,
}
impl PathSegment {
/// Convert an identifier to the corresponding segment.
pub fn from_name(name: Name) -> PathSegment {
PathSegment {
name,
infer_types: true,
parameters: None
}
}
pub fn new(name: Name, parameters: PathParameters, infer_types: bool) -> Self {
PathSegment {
name,
infer_types,
parameters: if parameters.is_empty() {
None
} else {
Some(P(parameters))
}
}
}
// FIXME: hack required because you can't create a static
// PathParameters, so you can't just return a &PathParameters.
pub fn with_parameters<F, R>(&self, f: F) -> R
where F: FnOnce(&PathParameters) -> R
{
let dummy = PathParameters::none();
f(if let Some(ref params) = self.parameters {
¶ms
} else {
&dummy
})
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PathParameters {
/// The lifetime parameters for this path segment.
pub lifetimes: HirVec<Lifetime>,
/// The type parameters for this path segment, if present.
pub types: HirVec<P<Ty>>,
/// Bindings (equality constraints) on associated types, if present.
/// E.g., `Foo<A=Bar>`.
pub bindings: HirVec<TypeBinding>,
/// Were parameters written in parenthesized form `Fn(T) -> U`?
/// This is required mostly for pretty-printing and diagnostics,
/// but also for changing lifetime elision rules to be "function-like".
pub parenthesized: bool,
}
impl PathParameters {
pub fn none() -> Self {
Self {
lifetimes: HirVec::new(),
types: HirVec::new(),
bindings: HirVec::new(),
parenthesized: false,
}
}
pub fn is_empty(&self) -> bool {
self.lifetimes.is_empty() && self.types.is_empty() &&
self.bindings.is_empty() && !self.parenthesized
}
pub fn inputs(&self) -> &[P<Ty>] {
if self.parenthesized {
if let Some(ref ty) = self.types.get(0) {
if let TyTup(ref tys) = ty.node {
return tys;
}
}
}
bug!("PathParameters::inputs: not a `Fn(T) -> U`");
}
}
/// The AST represents all type param bounds as types.
/// typeck::collect::compute_bounds matches these against
/// the "special" built-in traits (see middle::lang_items) and
/// detects Copy, Send and Sync.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TyParamBound {
TraitTyParamBound(PolyTraitRef, TraitBoundModifier),
RegionTyParamBound(Lifetime),
}
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitBoundModifier {
None,
Maybe,
}
pub type TyParamBounds = HirVec<TyParamBound>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TyParam {
pub name: Name,
pub id: NodeId,
pub bounds: TyParamBounds,
pub default: Option<P<Ty>>,
pub span: Span,
pub pure_wrt_drop: bool,
pub synthetic: Option<SyntheticTyParamKind>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum GenericParam {
Lifetime(LifetimeDef),
Type(TyParam),
}
impl GenericParam {
pub fn is_lifetime_param(&self) -> bool {
match *self {
GenericParam::Lifetime(_) => true,
_ => false,
}
}
pub fn is_type_param(&self) -> bool {
match *self {
GenericParam::Type(_) => true,
_ => false,
}
}
}
pub trait GenericParamsExt {
fn lifetimes<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&LifetimeDef>,
>;
fn ty_params<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&TyParam>,
>;
}
impl GenericParamsExt for [GenericParam] {
fn lifetimes<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&LifetimeDef>,
> {
self.iter().filter_map(|param| match *param {
GenericParam::Lifetime(ref l) => Some(l),
_ => None,
})
}
fn ty_params<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&TyParam>,
> {
self.iter().filter_map(|param| match *param {
GenericParam::Type(ref t) => Some(t),
_ => None,
})
}
}
/// Represents lifetimes and type parameters attached to a declaration
/// of a function, enum, trait, etc.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Generics {
pub params: HirVec<GenericParam>,
pub where_clause: WhereClause,
pub span: Span,
}
impl Generics {
pub fn empty() -> Generics {
Generics {
params: HirVec::new(),
where_clause: WhereClause {
id: DUMMY_NODE_ID,
predicates: HirVec::new(),
},
span: DUMMY_SP,
}
}
pub fn is_lt_parameterized(&self) -> bool {
self.params.iter().any(|param| param.is_lifetime_param())
}
pub fn is_type_parameterized(&self) -> bool {
self.params.iter().any(|param| param.is_type_param())
}
pub fn lifetimes<'a>(&'a self) -> impl Iterator<Item = &'a LifetimeDef> {
self.params.lifetimes()
}
pub fn ty_params<'a>(&'a self) -> impl Iterator<Item = &'a TyParam> {
self.params.ty_params()
}
}
pub enum UnsafeGeneric {
Region(LifetimeDef, &'static str),
Type(TyParam, &'static str),
}
impl UnsafeGeneric {
pub fn attr_name(&self) -> &'static str {
match *self {
UnsafeGeneric::Region(_, s) => s,
UnsafeGeneric::Type(_, s) => s,
}
}
}
impl Generics {
pub fn carries_unsafe_attr(&self) -> Option<UnsafeGeneric> {
for param in &self.params {
match *param {
GenericParam::Lifetime(ref l) => {
if l.pure_wrt_drop {
return Some(UnsafeGeneric::Region(l.clone(), "may_dangle"));
}
}
GenericParam::Type(ref t) => {
if t.pure_wrt_drop {
return Some(UnsafeGeneric::Type(t.clone(), "may_dangle"));
}
}
}
}
None
}
}
/// Synthetic Type Parameters are converted to an other form during lowering, this allows
/// to track the original form they had. Useful for error messages.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum SyntheticTyParamKind {
ImplTrait
}
/// A `where` clause in a definition
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereClause {
pub id: NodeId,
pub predicates: HirVec<WherePredicate>,
}
/// A single predicate in a `where` clause
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum WherePredicate {
/// A type binding, eg `for<'c> Foo: Send+Clone+'c`
BoundPredicate(WhereBoundPredicate),
/// A lifetime predicate, e.g. `'a: 'b+'c`
RegionPredicate(WhereRegionPredicate),
/// An equality predicate (unsupported)
EqPredicate(WhereEqPredicate),
}
/// A type bound, eg `for<'c> Foo: Send+Clone+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereBoundPredicate {
pub span: Span,
/// Any generics from a `for` binding
pub bound_generic_params: HirVec<GenericParam>,
/// The type being bounded
pub bounded_ty: P<Ty>,
/// Trait and lifetime bounds (`Clone+Send+'static`)
pub bounds: TyParamBounds,
}
/// A lifetime predicate, e.g. `'a: 'b+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereRegionPredicate {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: HirVec<Lifetime>,
}
/// An equality predicate (unsupported), e.g. `T=int`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereEqPredicate {
pub id: NodeId,
pub span: Span,
pub lhs_ty: P<Ty>,
pub rhs_ty: P<Ty>,
}
pub type CrateConfig = HirVec<P<MetaItem>>;
/// The top-level data structure that stores the entire contents of
/// the crate currently being compiled.
///
/// For more details, see the [rustc guide].
///
/// [rustc guide]: https://rust-lang-nursery.github.io/rustc-guide/hir.html
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)]
pub struct Crate {
pub module: Mod,
pub attrs: HirVec<Attribute>,
pub span: Span,
pub exported_macros: HirVec<MacroDef>,
// NB: We use a BTreeMap here so that `visit_all_items` iterates
// over the ids in increasing order. In principle it should not
// matter what order we visit things in, but in *practice* it
// does, because it can affect the order in which errors are
// detected, which in turn can make compile-fail tests yield
// slightly different results.
pub items: BTreeMap<NodeId, Item>,
pub trait_items: BTreeMap<TraitItemId, TraitItem>,
pub impl_items: BTreeMap<ImplItemId, ImplItem>,
pub bodies: BTreeMap<BodyId, Body>,
pub trait_impls: BTreeMap<DefId, Vec<NodeId>>,
pub trait_auto_impl: BTreeMap<DefId, NodeId>,
/// A list of the body ids written out in the order in which they
/// appear in the crate. If you're going to process all the bodies
/// in the crate, you should iterate over this list rather than the keys
/// of bodies.
pub body_ids: Vec<BodyId>,
}
impl Crate {
pub fn item(&self, id: NodeId) -> &Item {
&self.items[&id]
}
pub fn trait_item(&self, id: TraitItemId) -> &TraitItem {
&self.trait_items[&id]
}
pub fn impl_item(&self, id: ImplItemId) -> &ImplItem {
&self.impl_items[&id]
}
/// Visits all items in the crate in some deterministic (but
/// unspecified) order. If you just need to process every item,
/// but don't care about nesting, this method is the best choice.
///
/// If you do care about nesting -- usually because your algorithm
/// follows lexical scoping rules -- then you want a different
/// approach. You should override `visit_nested_item` in your
/// visitor and then call `intravisit::walk_crate` instead.
pub fn visit_all_item_likes<'hir, V>(&'hir self, visitor: &mut V)
where V: itemlikevisit::ItemLikeVisitor<'hir>
{
for (_, item) in &self.items {
visitor.visit_item(item);
}
for (_, trait_item) in &self.trait_items {
visitor.visit_trait_item(trait_item);
}
for (_, impl_item) in &self.impl_items {
visitor.visit_impl_item(impl_item);
}
}
pub fn body(&self, id: BodyId) -> &Body {
&self.bodies[&id]
}
}
/// A macro definition, in this crate or imported from another.
///
/// Not parsed directly, but created on macro import or `macro_rules!` expansion.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MacroDef {
pub name: Name,
pub vis: Visibility,
pub attrs: HirVec<Attribute>,
pub id: NodeId,
pub span: Span,
pub body: TokenStream,
pub legacy: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Block {
/// Statements in a block
pub stmts: HirVec<Stmt>,
/// An expression at the end of the block
/// without a semicolon, if any
pub expr: Option<P<Expr>>,
pub id: NodeId,
pub hir_id: HirId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`
pub rules: BlockCheckMode,
pub span: Span,
/// If true, then there may exist `break 'a` values that aim to
/// break out of this block early. As of this writing, this is not
/// currently permitted in Rust itself, but it is generated as
/// part of `catch` statements.
pub targeted_by_break: bool,
/// If true, don't emit return value type errors as the parser had
/// to recover from a parse error so this block will not have an
/// appropriate type. A parse error will have been emitted so the
/// compilation will never succeed if this is true.
pub recovered: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Pat {
pub id: NodeId,
pub hir_id: HirId,
pub node: PatKind,
pub span: Span,
}
impl fmt::Debug for Pat {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "pat({}: {})", self.id,
print::to_string(print::NO_ANN, |s| s.print_pat(self)))
}
}
impl Pat {
// FIXME(#19596) this is a workaround, but there should be a better way
fn walk_<G>(&self, it: &mut G) -> bool
where G: FnMut(&Pat) -> bool
{
if !it(self) {
return false;
}
match self.node {
PatKind::Binding(.., Some(ref p)) => p.walk_(it),
PatKind::Struct(_, ref fields, _) => {
fields.iter().all(|field| field.node.pat.walk_(it))
}
PatKind::TupleStruct(_, ref s, _) | PatKind::Tuple(ref s, _) => {
s.iter().all(|p| p.walk_(it))
}
PatKind::Box(ref s) | PatKind::Ref(ref s, _) => {
s.walk_(it)
}
PatKind::Slice(ref before, ref slice, ref after) => {
before.iter().all(|p| p.walk_(it)) &&
slice.iter().all(|p| p.walk_(it)) &&
after.iter().all(|p| p.walk_(it))
}
PatKind::Wild |
PatKind::Lit(_) |
PatKind::Range(..) |
PatKind::Binding(..) |
PatKind::Path(_) => {
true
}
}
}
pub fn walk<F>(&self, mut it: F) -> bool
where F: FnMut(&Pat) -> bool
{
self.walk_(&mut it)
}
}
/// A single field in a struct pattern
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except is_shorthand is true
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FieldPat {
/// The identifier for the field
pub name: Name,
/// The pattern the field is destructured to
pub pat: P<Pat>,
pub is_shorthand: bool,
}
/// Explicit binding annotations given in the HIR for a binding. Note
/// that this is not the final binding *mode* that we infer after type
/// inference.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BindingAnnotation {
/// No binding annotation given: this means that the final binding mode
/// will depend on whether we have skipped through a `&` reference
/// when matching. For example, the `x` in `Some(x)` will have binding
/// mode `None`; if you do `let Some(x) = &Some(22)`, it will
/// ultimately be inferred to be by-reference.
///
/// Note that implicit reference skipping is not implemented yet (#42640).
Unannotated,
/// Annotated with `mut x` -- could be either ref or not, similar to `None`.
Mutable,
/// Annotated as `ref`, like `ref x`
Ref,
/// Annotated as `ref mut x`.
RefMut,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum RangeEnd {
Included,
Excluded,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum PatKind {
/// Represents a wildcard pattern (`_`)
Wild,
/// A fresh binding `ref mut binding @ OPT_SUBPATTERN`.
/// The `NodeId` is the canonical ID for the variable being bound,
/// e.g. in `Ok(x) | Err(x)`, both `x` use the same canonical ID,
/// which is the pattern ID of the first `x`.
Binding(BindingAnnotation, NodeId, Spanned<Name>, Option<P<Pat>>),
/// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`.
/// The `bool` is `true` in the presence of a `..`.
Struct(QPath, HirVec<Spanned<FieldPat>>, bool),
/// A tuple struct/variant pattern `Variant(x, y, .., z)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
TupleStruct(QPath, HirVec<P<Pat>>, Option<usize>),
/// A path pattern for an unit struct/variant or a (maybe-associated) constant.
Path(QPath),
/// A tuple pattern `(a, b)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
Tuple(HirVec<P<Pat>>, Option<usize>),
/// A `box` pattern
Box(P<Pat>),
/// A reference pattern, e.g. `&mut (a, b)`
Ref(P<Pat>, Mutability),
/// A literal
Lit(P<Expr>),
/// A range pattern, e.g. `1...2` or `1..2`
Range(P<Expr>, P<Expr>, RangeEnd),
/// `[a, b, ..i, y, z]` is represented as:
/// `PatKind::Slice(box [a, b], Some(i), box [y, z])`
Slice(HirVec<P<Pat>>, Option<P<Pat>>, HirVec<P<Pat>>),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
impl Mutability {
/// Return MutMutable only if both arguments are mutable.
pub fn and(self, other: Self) -> Self {
match self {
MutMutable => other,
MutImmutable => MutImmutable,
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BinOp_ {
/// The `+` operator (addition)
BiAdd,
/// The `-` operator (subtraction)
BiSub,
/// The `*` operator (multiplication)
BiMul,
/// The `/` operator (division)
BiDiv,
/// The `%` operator (modulus)
BiRem,
/// The `&&` operator (logical and)
BiAnd,
/// The `||` operator (logical or)
BiOr,
/// The `^` operator (bitwise xor)
BiBitXor,
/// The `&` operator (bitwise and)
BiBitAnd,
/// The `|` operator (bitwise or)
BiBitOr,
/// The `<<` operator (shift left)
BiShl,
/// The `>>` operator (shift right)
BiShr,
/// The `==` operator (equality)
BiEq,
/// The `<` operator (less than)
BiLt,
/// The `<=` operator (less than or equal to)
BiLe,
/// The `!=` operator (not equal to)
BiNe,
/// The `>=` operator (greater than or equal to)
BiGe,
/// The `>` operator (greater than)
BiGt,
}
impl BinOp_ {
pub fn as_str(self) -> &'static str {
match self {
BiAdd => "+",
BiSub => "-",
BiMul => "*",
BiDiv => "/",
BiRem => "%",
BiAnd => "&&",
BiOr => "||",
BiBitXor => "^",
BiBitAnd => "&",
BiBitOr => "|",
BiShl => "<<",
BiShr => ">>",
BiEq => "==",
BiLt => "<",
BiLe => "<=",
BiNe => "!=",
BiGe => ">=",
BiGt => ">",
}
}
pub fn is_lazy(self) -> bool {
match self {
BiAnd | BiOr => true,
_ => false,
}
}
pub fn is_shift(self) -> bool {
match self {
BiShl | BiShr => true,
_ => false,
}
}
pub fn is_comparison(self) -> bool {
match self {
BiEq | BiLt | BiLe | BiNe | BiGt | BiGe => true,
BiAnd |
BiOr |
BiAdd |
BiSub |
BiMul |
BiDiv |
BiRem |
BiBitXor |
BiBitAnd |
BiBitOr |
BiShl |
BiShr => false,
}
}
/// Returns `true` if the binary operator takes its arguments by value
pub fn is_by_value(self) -> bool {
!self.is_comparison()
}
}
impl Into<ast::BinOpKind> for BinOp_ {
fn into(self) -> ast::BinOpKind {
match self {
BiAdd => ast::BinOpKind::Add,
BiSub => ast::BinOpKind::Sub,
BiMul => ast::BinOpKind::Mul,
BiDiv => ast::BinOpKind::Div,
BiRem => ast::BinOpKind::Rem,
BiAnd => ast::BinOpKind::And,
BiOr => ast::BinOpKind::Or,
BiBitXor => ast::BinOpKind::BitXor,
BiBitAnd => ast::BinOpKind::BitAnd,
BiBitOr => ast::BinOpKind::BitOr,
BiShl => ast::BinOpKind::Shl,
BiShr => ast::BinOpKind::Shr,
BiEq => ast::BinOpKind::Eq,
BiLt => ast::BinOpKind::Lt,
BiLe => ast::BinOpKind::Le,
BiNe => ast::BinOpKind::Ne,
BiGe => ast::BinOpKind::Ge,
BiGt => ast::BinOpKind::Gt,
}
}
}