-
Notifications
You must be signed in to change notification settings - Fork 13k
/
visitor.rs
359 lines (329 loc) · 14.7 KB
/
visitor.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
//! types until we arrive at the leaves, with custom handling for primitive types.
use rustc::ty::layout::{self, TyLayout, VariantIdx};
use rustc::ty;
use rustc::mir::interpret::{
EvalResult,
};
use super::{
Machine, InterpretCx, MPlaceTy, OpTy,
};
// A thing that we can project into, and that has a layout.
// This wouldn't have to depend on `Machine` but with the current type inference,
// that's just more convenient to work with (avoids repeating all the `Machine` bounds).
pub trait Value<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>: Copy
{
/// Gets this value's layout.
fn layout(&self) -> TyLayout<'tcx>;
/// Makes this into an `OpTy`.
fn to_op(
self,
ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
) -> EvalResult<'tcx, OpTy<'tcx, M::PointerTag>>;
/// Creates this from an `MPlaceTy`.
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self;
/// Projects to the given enum variant.
fn project_downcast(
self,
ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
variant: VariantIdx,
) -> EvalResult<'tcx, Self>;
/// Projects to the n-th field.
fn project_field(
self,
ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
field: u64,
) -> EvalResult<'tcx, Self>;
}
// Operands and memory-places are both values.
// Places in general are not due to `place_field` having to do `force_allocation`.
impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> Value<'a, 'mir, 'tcx, M>
for OpTy<'tcx, M::PointerTag>
{
#[inline(always)]
fn layout(&self) -> TyLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op(
self,
_ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
) -> EvalResult<'tcx, OpTy<'tcx, M::PointerTag>> {
Ok(self)
}
#[inline(always)]
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self {
mplace.into()
}
#[inline(always)]
fn project_downcast(
self,
ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
variant: VariantIdx,
) -> EvalResult<'tcx, Self> {
ecx.operand_downcast(self, variant)
}
#[inline(always)]
fn project_field(
self,
ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
field: u64,
) -> EvalResult<'tcx, Self> {
ecx.operand_field(self, field)
}
}
impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> Value<'a, 'mir, 'tcx, M>
for MPlaceTy<'tcx, M::PointerTag>
{
#[inline(always)]
fn layout(&self) -> TyLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op(
self,
_ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
) -> EvalResult<'tcx, OpTy<'tcx, M::PointerTag>> {
Ok(self.into())
}
#[inline(always)]
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self {
mplace
}
#[inline(always)]
fn project_downcast(
self,
ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
variant: VariantIdx,
) -> EvalResult<'tcx, Self> {
ecx.mplace_downcast(self, variant)
}
#[inline(always)]
fn project_field(
self,
ecx: &InterpretCx<'a, 'mir, 'tcx, M>,
field: u64,
) -> EvalResult<'tcx, Self> {
ecx.mplace_field(self, field)
}
}
macro_rules! make_value_visitor {
($visitor_trait_name:ident, $($mutability:ident)?) => {
// How to traverse a value and what to do when we are at the leaves.
pub trait $visitor_trait_name<'a, 'mir, 'tcx: 'mir+'a, M: Machine<'a, 'mir, 'tcx>>: Sized {
type V: Value<'a, 'mir, 'tcx, M>;
/// The visitor must have an `InterpretCx` in it.
fn ecx(&$($mutability)? self)
-> &$($mutability)? InterpretCx<'a, 'mir, 'tcx, M>;
// Recursive actions, ready to be overloaded.
/// Visits the given value, dispatching as appropriate to more specialized visitors.
#[inline(always)]
fn visit_value(&mut self, v: Self::V) -> EvalResult<'tcx>
{
self.walk_value(v)
}
/// Visits the given value as a union. No automatic recursion can happen here.
#[inline(always)]
fn visit_union(&mut self, _v: Self::V) -> EvalResult<'tcx>
{
Ok(())
}
/// Visits this vale as an aggregate, you are even getting an iterator yielding
/// all the fields (still in an `EvalResult`, you have to do error handling yourself).
/// Recurses into the fields.
#[inline(always)]
fn visit_aggregate(
&mut self,
v: Self::V,
fields: impl Iterator<Item=EvalResult<'tcx, Self::V>>,
) -> EvalResult<'tcx> {
self.walk_aggregate(v, fields)
}
/// Called each time we recurse down to a field of a "product-like" aggregate
/// (structs, tuples, arrays and the like, but not enums), passing in old and new value.
/// This gives the visitor the chance to track the stack of nested fields that
/// we are descending through.
#[inline(always)]
fn visit_field(
&mut self,
_old_val: Self::V,
_field: usize,
new_val: Self::V,
) -> EvalResult<'tcx> {
self.visit_value(new_val)
}
/// Called for recursing into the field of a generator. These are not known to be
/// initialized, so we treat them like unions.
#[inline(always)]
fn visit_generator_field(
&mut self,
_old_val: Self::V,
_field: usize,
new_val: Self::V,
) -> EvalResult<'tcx> {
self.visit_union(new_val)
}
/// Called when recursing into an enum variant.
#[inline(always)]
fn visit_variant(
&mut self,
_old_val: Self::V,
_variant: VariantIdx,
new_val: Self::V,
) -> EvalResult<'tcx> {
self.visit_value(new_val)
}
/// Called whenever we reach a value with uninhabited layout.
/// Recursing to fields will *always* continue after this! This is not meant to control
/// whether and how we descend recursively/ into the scalar's fields if there are any,
/// it is meant to provide the chance for additional checks when a value of uninhabited
/// layout is detected.
#[inline(always)]
fn visit_uninhabited(&mut self) -> EvalResult<'tcx>
{ Ok(()) }
/// Called whenever we reach a value with scalar layout.
/// We do NOT provide a `ScalarMaybeUndef` here to avoid accessing memory if the
/// visitor is not even interested in scalars.
/// Recursing to fields will *always* continue after this! This is not meant to control
/// whether and how we descend recursively/ into the scalar's fields if there are any,
/// it is meant to provide the chance for additional checks when a value of scalar
/// layout is detected.
#[inline(always)]
fn visit_scalar(&mut self, _v: Self::V, _layout: &layout::Scalar) -> EvalResult<'tcx>
{ Ok(()) }
/// Called whenever we reach a value of primitive type. There can be no recursion
/// below such a value. This is the leaf function.
/// We do *not* provide an `ImmTy` here because some implementations might want
/// to write to the place this primitive lives in.
#[inline(always)]
fn visit_primitive(&mut self, _v: Self::V) -> EvalResult<'tcx>
{ Ok(()) }
// Default recursors. Not meant to be overloaded.
fn walk_aggregate(
&mut self,
v: Self::V,
fields: impl Iterator<Item=EvalResult<'tcx, Self::V>>,
) -> EvalResult<'tcx> {
// Now iterate over it.
for (idx, field_val) in fields.enumerate() {
self.visit_field(v, idx, field_val?)?;
}
Ok(())
}
fn walk_value(&mut self, v: Self::V) -> EvalResult<'tcx>
{
trace!("walk_value: type: {}", v.layout().ty);
// If this is a multi-variant layout, we have find the right one and proceed with
// that.
match v.layout().variants {
layout::Variants::Multiple { .. } => {
let op = v.to_op(self.ecx())?;
let idx = self.ecx().read_discriminant(op)?.1;
let inner = v.project_downcast(self.ecx(), idx)?;
trace!("walk_value: variant layout: {:#?}", inner.layout());
// recurse with the inner type
return self.visit_variant(v, idx, inner);
}
layout::Variants::Single { .. } => {}
}
// Even for single variants, we might be able to get a more refined type:
// If it is a trait object, switch to the actual type that was used to create it.
match v.layout().ty.sty {
ty::Dynamic(..) => {
// immediate trait objects are not a thing
let dest = v.to_op(self.ecx())?.to_mem_place();
let inner = self.ecx().unpack_dyn_trait(dest)?.1;
trace!("walk_value: dyn object layout: {:#?}", inner.layout);
// recurse with the inner type
return self.visit_field(v, 0, Value::from_mem_place(inner));
},
_ => {},
};
// If this is a scalar, visit it as such.
// Things can be aggregates and have scalar layout at the same time, and that
// is very relevant for `NonNull` and similar structs: We need to visit them
// at their scalar layout *before* descending into their fields.
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g., first we check
// MyNewtype and then the scalar in there).
match v.layout().abi {
layout::Abi::Uninhabited => {
self.visit_uninhabited()?;
}
layout::Abi::Scalar(ref layout) => {
self.visit_scalar(v, layout)?;
}
// FIXME: Should we do something for ScalarPair? Vector?
_ => {}
}
// Check primitive types. We do this after checking the scalar layout,
// just to have that done as well. Primitives can have varying layout,
// so we check them separately and before aggregate handling.
// It is CRITICAL that we get this check right, or we might be
// validating the wrong thing!
let primitive = match v.layout().fields {
// Primitives appear as Union with 0 fields - except for Boxes and fat pointers.
layout::FieldPlacement::Union(0) => true,
_ => v.layout().ty.builtin_deref(true).is_some(),
};
if primitive {
return self.visit_primitive(v);
}
// Proceed into the fields.
match v.layout().fields {
layout::FieldPlacement::Union(fields) => {
// Empty unions are not accepted by rustc. That's great, it means we can
// use that as an unambiguous signal for detecting primitives. Make sure
// we did not miss any primitive.
debug_assert!(fields > 0);
self.visit_union(v)
},
layout::FieldPlacement::Arbitrary { ref offsets, .. } => {
// Special handling needed for generators: All but the first field
// (which is the state) are actually implicitly `MaybeUninit`, i.e.,
// they may or may not be initialized, so we cannot visit them.
match v.layout().ty.sty {
ty::Generator(..) => {
let field = v.project_field(self.ecx(), 0)?;
self.visit_aggregate(v, std::iter::once(Ok(field)))?;
for i in 1..offsets.len() {
let field = v.project_field(self.ecx(), i as u64)?;
self.visit_generator_field(v, i, field)?;
}
Ok(())
}
_ => {
// FIXME: We collect in a vec because otherwise there are lifetime
// errors: Projecting to a field needs access to `ecx`.
let fields: Vec<EvalResult<'tcx, Self::V>> =
(0..offsets.len()).map(|i| {
v.project_field(self.ecx(), i as u64)
})
.collect();
self.visit_aggregate(v, fields.into_iter())
}
}
},
layout::FieldPlacement::Array { .. } => {
// Let's get an mplace first.
let mplace = if v.layout().is_zst() {
// it's a ZST, the memory content cannot matter
MPlaceTy::dangling(v.layout(), self.ecx())
} else {
// non-ZST array/slice/str cannot be immediate
v.to_op(self.ecx())?.to_mem_place()
};
// Now we can go over all the fields.
let iter = self.ecx().mplace_array_fields(mplace)?
.map(|f| f.and_then(|f| {
Ok(Value::from_mem_place(f))
}));
self.visit_aggregate(v, iter)
}
}
}
}
}
}
make_value_visitor!(ValueVisitor,);
make_value_visitor!(MutValueVisitor,mut);