-
Notifications
You must be signed in to change notification settings - Fork 13.2k
/
Copy pathcandidate_assembly.rs
793 lines (709 loc) · 33.7 KB
/
candidate_assembly.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
//! Candidate assembly.
//!
//! The selection process begins by examining all in-scope impls,
//! caller obligations, and so forth and assembling a list of
//! candidates. See the [rustc dev guide] for more details.
//!
//! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
use rustc_hir as hir;
use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, TypeFoldable};
use rustc_target::spec::abi::Abi;
use crate::traits::coherence::Conflict;
use crate::traits::{util, SelectionResult};
use crate::traits::{Overflow, Unimplemented};
use super::BuiltinImplConditions;
use super::IntercrateAmbiguityCause;
use super::OverflowError;
use super::SelectionCandidate::{self, *};
use super::{EvaluatedCandidate, SelectionCandidateSet, SelectionContext, TraitObligationStack};
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
#[instrument(level = "debug", skip(self))]
pub(super) fn candidate_from_obligation<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
// Check the cache. Note that we freshen the trait-ref
// separately rather than using `stack.fresh_trait_ref` --
// this is because we want the unbound variables to be
// replaced with fresh types starting from index 0.
let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
debug!(?cache_fresh_trait_pred);
debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
if let Some(c) =
self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
{
debug!(candidate = ?c, "CACHE HIT");
return c;
}
// If no match, compute result and insert into cache.
//
// FIXME(nikomatsakis) -- this cache is not taking into
// account cycles that may have occurred in forming the
// candidate. I don't know of any specific problems that
// result but it seems awfully suspicious.
let (candidate, dep_node) =
self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
debug!(?candidate, "CACHE MISS");
self.insert_candidate_cache(
stack.obligation.param_env,
cache_fresh_trait_pred,
dep_node,
candidate.clone(),
);
candidate
}
fn candidate_from_obligation_no_cache<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
if let Some(conflict) = self.is_knowable(stack) {
debug!("coherence stage: not knowable");
if self.intercrate_ambiguity_causes.is_some() {
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
// Heuristics: show the diagnostics when there are no candidates in crate.
if let Ok(candidate_set) = self.assemble_candidates(stack) {
let mut no_candidates_apply = true;
for c in candidate_set.vec.iter() {
if self.evaluate_candidate(stack, &c)?.may_apply() {
no_candidates_apply = false;
break;
}
}
if !candidate_set.ambiguous && no_candidates_apply {
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
let self_ty = trait_ref.self_ty();
let (trait_desc, self_desc) = with_no_trimmed_paths(|| {
let trait_desc = trait_ref.print_only_trait_path().to_string();
let self_desc = if self_ty.has_concrete_skeleton() {
Some(self_ty.to_string())
} else {
None
};
(trait_desc, self_desc)
});
let cause = if let Conflict::Upstream = conflict {
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
} else {
IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
};
debug!(?cause, "evaluate_stack: pushing cause");
self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
}
}
}
return Ok(None);
}
let candidate_set = self.assemble_candidates(stack)?;
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let mut candidates = candidate_set.vec;
debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for `$0: Eq` where `$0` is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes `$0 ==
// usize`, etc. This spells an ambiguity.
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report "`Bar` does
// not implement `Clone`".
if candidates.len() == 1 {
return self.filter_negative_and_reservation_impls(candidates.pop().unwrap());
}
// Winnow, but record the exact outcome of evaluation, which
// is needed for specialization. Propagate overflow if it occurs.
let mut candidates = candidates
.into_iter()
.map(|c| match self.evaluate_candidate(stack, &c) {
Ok(eval) if eval.may_apply() => {
Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
}
Ok(_) => Ok(None),
Err(OverflowError) => Err(Overflow),
})
.flat_map(Result::transpose)
.collect::<Result<Vec<_>, _>>()?;
debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
let needs_infer = stack.obligation.predicate.has_infer_types_or_consts();
// If there are STILL multiple candidates, we can further
// reduce the list by dropping duplicates -- including
// resolving specializations.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
self.candidate_should_be_dropped_in_favor_of(
&candidates[i],
&candidates[j],
needs_infer,
)
});
if is_dup {
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
candidates.swap_remove(i);
} else {
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
i += 1;
// If there are *STILL* multiple candidates, give up
// and report ambiguity.
if i > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
}
}
}
// If there are *NO* candidates, then there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.is_empty() {
// If there's an error type, 'downgrade' our result from
// `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
// emitting additional spurious errors, since we're guaranteed
// to have emitted at least one.
if stack.obligation.references_error() {
debug!("no results for error type, treating as ambiguous");
return Ok(None);
}
return Err(Unimplemented);
}
// Just one candidate left.
self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate)
}
pub(super) fn assemble_candidates<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
let TraitObligationStack { obligation, .. } = *stack;
let obligation = &Obligation {
param_env: obligation.param_env,
cause: obligation.cause.clone(),
recursion_depth: obligation.recursion_depth,
predicate: self.infcx().resolve_vars_if_possible(obligation.predicate),
};
if obligation.predicate.skip_binder().self_ty().is_ty_var() {
// Self is a type variable (e.g., `_: AsRef<str>`).
//
// This is somewhat problematic, as the current scheme can't really
// handle it turning to be a projection. This does end up as truly
// ambiguous in most cases anyway.
//
// Take the fast path out - this also improves
// performance by preventing assemble_candidates_from_impls from
// matching every impl for this trait.
return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
}
let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
// Other bounds. Consider both in-scope bounds from fn decl
// and applicable impls. There is a certain set of precedence rules here.
let def_id = obligation.predicate.def_id();
let lang_items = self.tcx().lang_items();
if lang_items.copy_trait() == Some(def_id) {
debug!(obligation_self_ty = ?obligation.predicate.skip_binder().self_ty());
// User-defined copy impls are permitted, but only for
// structs and enums.
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
// For other types, we'll use the builtin rules.
let copy_conditions = self.copy_clone_conditions(obligation);
self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
} else if lang_items.discriminant_kind_trait() == Some(def_id) {
// `DiscriminantKind` is automatically implemented for every type.
candidates.vec.push(DiscriminantKindCandidate);
} else if lang_items.sized_trait() == Some(def_id) {
// Sized is never implementable by end-users, it is
// always automatically computed.
let sized_conditions = self.sized_conditions(obligation);
self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
} else if lang_items.unsize_trait() == Some(def_id) {
self.assemble_candidates_for_unsizing(obligation, &mut candidates);
} else {
if lang_items.clone_trait() == Some(def_id) {
// Same builtin conditions as `Copy`, i.e., every type which has builtin support
// for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
// types have builtin support for `Clone`.
let clone_conditions = self.copy_clone_conditions(obligation);
self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
}
self.assemble_generator_candidates(obligation, &mut candidates)?;
self.assemble_closure_candidates(obligation, &mut candidates)?;
self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
}
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
// Auto implementations have lower priority, so we only
// consider triggering a default if there is no other impl that can apply.
if candidates.vec.is_empty() {
self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
}
debug!("candidate list size: {}", candidates.vec.len());
Ok(candidates)
}
fn assemble_candidates_from_projected_tys(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
debug!(?obligation, "assemble_candidates_from_projected_tys");
// Before we go into the whole placeholder thing, just
// quickly check if the self-type is a projection at all.
match obligation.predicate.skip_binder().trait_ref.self_ty().kind() {
ty::Projection(_) | ty::Opaque(..) => {}
ty::Infer(ty::TyVar(_)) => {
span_bug!(
obligation.cause.span,
"Self=_ should have been handled by assemble_candidates"
);
}
_ => return,
}
let result = self
.infcx
.probe(|_| self.match_projection_obligation_against_definition_bounds(obligation));
for predicate_index in result {
candidates.vec.push(ProjectionCandidate(predicate_index));
}
}
/// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
/// supplied to find out whether it is listed among them.
///
/// Never affects the inference environment.
fn assemble_candidates_from_caller_bounds<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
debug!(?stack.obligation, "assemble_candidates_from_caller_bounds");
let all_bounds = stack
.obligation
.param_env
.caller_bounds()
.iter()
.filter_map(|o| o.to_opt_poly_trait_ref());
// Micro-optimization: filter out predicates relating to different traits.
let matching_bounds =
all_bounds.filter(|p| p.value.def_id() == stack.obligation.predicate.def_id());
// Keep only those bounds which may apply, and propagate overflow if it occurs.
for bound in matching_bounds {
let wc = self.evaluate_where_clause(stack, bound.value)?;
if wc.may_apply() {
candidates.vec.push(ParamCandidate(bound));
}
}
Ok(())
}
fn assemble_generator_candidates(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
return Ok(());
}
// Okay to skip binder because the substs on generator types never
// touch bound regions, they just capture the in-scope
// type/region parameters.
let self_ty = obligation.self_ty().skip_binder();
match self_ty.kind() {
ty::Generator(..) => {
debug!(?self_ty, ?obligation, "assemble_generator_candidates",);
candidates.vec.push(GeneratorCandidate);
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_generator_candidates: ambiguous self-type");
candidates.ambiguous = true;
}
_ => {}
}
Ok(())
}
/// Checks for the artificial impl that the compiler will create for an obligation like `X :
/// FnMut<..>` where `X` is a closure type.
///
/// Note: the type parameters on a closure candidate are modeled as *output* type
/// parameters and hence do not affect whether this trait is a match or not. They will be
/// unified during the confirmation step.
fn assemble_closure_candidates(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
let kind = match self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()) {
Some(k) => k,
None => {
return Ok(());
}
};
// Okay to skip binder because the substs on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters
match *obligation.self_ty().skip_binder().kind() {
ty::Closure(_, closure_substs) => {
debug!(?kind, ?obligation, "assemble_unboxed_candidates");
match self.infcx.closure_kind(closure_substs) {
Some(closure_kind) => {
debug!(?closure_kind, "assemble_unboxed_candidates");
if closure_kind.extends(kind) {
candidates.vec.push(ClosureCandidate);
}
}
None => {
debug!("assemble_unboxed_candidates: closure_kind not yet known");
candidates.vec.push(ClosureCandidate);
}
}
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
candidates.ambiguous = true;
}
_ => {}
}
Ok(())
}
/// Implements one of the `Fn()` family for a fn pointer.
fn assemble_fn_pointer_candidates(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
// We provide impl of all fn traits for fn pointers.
if self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()).is_none() {
return Ok(());
}
// Okay to skip binder because what we are inspecting doesn't involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
match *self_ty.kind() {
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
candidates.ambiguous = true; // Could wind up being a fn() type.
}
// Provide an impl, but only for suitable `fn` pointers.
ty::FnPtr(_) => {
if let ty::FnSig {
unsafety: hir::Unsafety::Normal,
abi: Abi::Rust,
c_variadic: false,
..
} = self_ty.fn_sig(self.tcx()).skip_binder()
{
candidates.vec.push(FnPointerCandidate);
}
}
// Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
ty::FnDef(def_id, _) => {
if let ty::FnSig {
unsafety: hir::Unsafety::Normal,
abi: Abi::Rust,
c_variadic: false,
..
} = self_ty.fn_sig(self.tcx()).skip_binder()
{
if self.tcx().codegen_fn_attrs(def_id).target_features.is_empty() {
candidates.vec.push(FnPointerCandidate);
}
}
}
_ => {}
}
Ok(())
}
/// Searches for impls that might apply to `obligation`.
fn assemble_candidates_from_impls(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
debug!(?obligation, "assemble_candidates_from_impls");
// Essentially any user-written impl will match with an error type,
// so creating `ImplCandidates` isn't useful. However, we might
// end up finding a candidate elsewhere (e.g. a `BuiltinCandidate` for `Sized)
// This helps us avoid overflow: see issue #72839
// Since compilation is already guaranteed to fail, this is just
// to try to show the 'nicest' possible errors to the user.
if obligation.references_error() {
return Ok(());
}
self.tcx().for_each_relevant_impl(
obligation.predicate.def_id(),
obligation.predicate.skip_binder().trait_ref.self_ty(),
|impl_def_id| {
self.infcx.probe(|_| {
if let Ok(_substs) = self.match_impl(impl_def_id, obligation) {
candidates.vec.push(ImplCandidate(impl_def_id));
}
});
},
);
Ok(())
}
fn assemble_candidates_from_auto_impls(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
// Okay to skip binder here because the tests we do below do not involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
debug!(?self_ty, "assemble_candidates_from_auto_impls");
let def_id = obligation.predicate.def_id();
if self.tcx().trait_is_auto(def_id) {
match self_ty.kind() {
ty::Dynamic(..) => {
// For object types, we don't know what the closed
// over types are. This means we conservatively
// say nothing; a candidate may be added by
// `assemble_candidates_from_object_ty`.
}
ty::Foreign(..) => {
// Since the contents of foreign types is unknown,
// we don't add any `..` impl. Default traits could
// still be provided by a manual implementation for
// this trait and type.
}
ty::Param(..) | ty::Projection(..) => {
// In these cases, we don't know what the actual
// type is. Therefore, we cannot break it down
// into its constituent types. So we don't
// consider the `..` impl but instead just add no
// candidates: this means that typeck will only
// succeed if there is another reason to believe
// that this obligation holds. That could be a
// where-clause or, in the case of an object type,
// it could be that the object type lists the
// trait (e.g., `Foo+Send : Send`). See
// `compile-fail/typeck-default-trait-impl-send-param.rs`
// for an example of a test case that exercises
// this path.
}
ty::Infer(ty::TyVar(_)) => {
// The auto impl might apply; we don't know.
candidates.ambiguous = true;
}
ty::Generator(_, _, movability)
if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
{
match movability {
hir::Movability::Static => {
// Immovable generators are never `Unpin`, so
// suppress the normal auto-impl candidate for it.
}
hir::Movability::Movable => {
// Movable generators are always `Unpin`, so add an
// unconditional builtin candidate.
candidates.vec.push(BuiltinCandidate { has_nested: false });
}
}
}
_ => candidates.vec.push(AutoImplCandidate(def_id)),
}
}
Ok(())
}
/// Searches for impls that might apply to `obligation`.
fn assemble_candidates_from_object_ty(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
debug!(
self_ty = ?obligation.self_ty().skip_binder(),
"assemble_candidates_from_object_ty",
);
self.infcx.probe(|_snapshot| {
// The code below doesn't care about regions, and the
// self-ty here doesn't escape this probe, so just erase
// any LBR.
let self_ty = self.tcx().erase_late_bound_regions(obligation.self_ty());
let poly_trait_ref = match self_ty.kind() {
ty::Dynamic(ref data, ..) => {
if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
debug!(
"assemble_candidates_from_object_ty: matched builtin bound, \
pushing candidate"
);
candidates.vec.push(BuiltinObjectCandidate);
return;
}
if let Some(principal) = data.principal() {
if !self.infcx.tcx.features().object_safe_for_dispatch {
principal.with_self_ty(self.tcx(), self_ty)
} else if self.tcx().is_object_safe(principal.def_id()) {
principal.with_self_ty(self.tcx(), self_ty)
} else {
return;
}
} else {
// Only auto trait bounds exist.
return;
}
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_candidates_from_object_ty: ambiguous");
candidates.ambiguous = true; // could wind up being an object type
return;
}
_ => return,
};
debug!(?poly_trait_ref, "assemble_candidates_from_object_ty");
let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
let placeholder_trait_predicate =
self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
// Count only those upcast versions that match the trait-ref
// we are looking for. Specifically, do not only check for the
// correct trait, but also the correct type parameters.
// For example, we may be trying to upcast `Foo` to `Bar<i32>`,
// but `Foo` is declared as `trait Foo: Bar<u32>`.
let candidate_supertraits = util::supertraits(self.tcx(), poly_trait_ref)
.enumerate()
.filter(|&(_, upcast_trait_ref)| {
self.infcx.probe(|_| {
self.match_normalize_trait_ref(
obligation,
upcast_trait_ref,
placeholder_trait_predicate.trait_ref,
)
.is_ok()
})
})
.map(|(idx, _)| ObjectCandidate(idx));
candidates.vec.extend(candidate_supertraits);
})
}
/// Searches for unsizing that might apply to `obligation`.
fn assemble_candidates_for_unsizing(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// We currently never consider higher-ranked obligations e.g.
// `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
// because they are a priori invalid, and we could potentially add support
// for them later, it's just that there isn't really a strong need for it.
// A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
// impl, and those are generally applied to concrete types.
//
// That said, one might try to write a fn with a where clause like
// for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
// where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
// Still, you'd be more likely to write that where clause as
// T: Trait
// so it seems ok if we (conservatively) fail to accept that `Unsize`
// obligation above. Should be possible to extend this in the future.
let source = match obligation.self_ty().no_bound_vars() {
Some(t) => t,
None => {
// Don't add any candidates if there are bound regions.
return;
}
};
let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
debug!(?source, ?target, "assemble_candidates_for_unsizing");
let may_apply = match (source.kind(), target.kind()) {
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
(&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
// Upcasts permit two things:
//
// 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
// 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
//
// Note that neither of these changes requires any
// change at runtime. Eventually this will be
// generalized.
//
// We always upcast when we can because of reason
// #2 (region bounds).
data_a.principal_def_id() == data_b.principal_def_id()
&& data_b
.auto_traits()
// All of a's auto traits need to be in b's auto traits.
.all(|b| data_a.auto_traits().any(|a| a == b))
}
// `T` -> `Trait`
(_, &ty::Dynamic(..)) => true,
// Ambiguous handling is below `T` -> `Trait`, because inference
// variables can still implement `Unsize<Trait>` and nested
// obligations will have the final say (likely deferred).
(&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
debug!("assemble_candidates_for_unsizing: ambiguous");
candidates.ambiguous = true;
false
}
// `[T; n]` -> `[T]`
(&ty::Array(..), &ty::Slice(_)) => true,
// `Struct<T>` -> `Struct<U>`
(&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
def_id_a == def_id_b
}
// `(.., T)` -> `(.., U)`
(&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
_ => false,
};
if may_apply {
candidates.vec.push(BuiltinUnsizeCandidate);
}
}
fn assemble_candidates_for_trait_alias(
&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
// Okay to skip binder here because the tests we do below do not involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
debug!(?self_ty, "assemble_candidates_for_trait_alias");
let def_id = obligation.predicate.def_id();
if self.tcx().is_trait_alias(def_id) {
candidates.vec.push(TraitAliasCandidate(def_id));
}
Ok(())
}
/// Assembles the trait which are built-in to the language itself:
/// `Copy`, `Clone` and `Sized`.
fn assemble_builtin_bound_candidates(
&mut self,
conditions: BuiltinImplConditions<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
match conditions {
BuiltinImplConditions::Where(nested) => {
debug!(?nested, "builtin_bound");
candidates
.vec
.push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
}
BuiltinImplConditions::None => {}
BuiltinImplConditions::Ambiguous => {
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
candidates.ambiguous = true;
}
}
Ok(())
}
}