-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathprocess.rs
627 lines (563 loc) · 26.8 KB
/
process.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(deprecated)] // this module itself is essentially deprecated
use prelude::v1::*;
use self::Req::*;
use collections::HashMap;
use ffi::CString;
use hash::Hash;
use old_io::process::{ProcessExit, ExitStatus, ExitSignal};
use old_io::{IoResult, EndOfFile};
use libc::{self, pid_t, c_void, c_int};
use io;
use mem;
use sys::os;
use old_path::BytesContainer;
use ptr;
use sync::mpsc::{channel, Sender, Receiver};
use sys::fs::FileDesc;
use sys::{self, retry, c, wouldblock, set_nonblocking, ms_to_timeval};
use sys_common::helper_thread::Helper;
use sys_common::{AsInner, mkerr_libc, timeout};
pub use sys_common::ProcessConfig;
helper_init! { static HELPER: Helper<Req> }
/// The unique id of the process (this should never be negative).
pub struct Process {
pub pid: pid_t
}
enum Req {
NewChild(libc::pid_t, Sender<ProcessExit>, u64),
}
const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";
impl Process {
pub fn id(&self) -> pid_t {
self.pid
}
pub unsafe fn kill(&self, signal: isize) -> IoResult<()> {
Process::killpid(self.pid, signal)
}
pub unsafe fn killpid(pid: pid_t, signal: isize) -> IoResult<()> {
let r = libc::funcs::posix88::signal::kill(pid, signal as c_int);
mkerr_libc(r)
}
pub fn spawn<K, V, C, P>(cfg: &C, in_fd: Option<P>,
out_fd: Option<P>, err_fd: Option<P>)
-> IoResult<Process>
where C: ProcessConfig<K, V>, P: AsInner<FileDesc>,
K: BytesContainer + Eq + Hash, V: BytesContainer
{
use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
mod rustrt {
extern {
pub fn rust_unset_sigprocmask();
}
}
unsafe fn set_cloexec(fd: c_int) {
let ret = c::ioctl(fd, c::FIOCLEX);
assert_eq!(ret, 0);
}
#[cfg(all(target_os = "android", target_arch = "aarch64"))]
unsafe fn getdtablesize() -> c_int {
libc::sysconf(libc::consts::os::sysconf::_SC_OPEN_MAX) as c_int
}
#[cfg(not(all(target_os = "android", target_arch = "aarch64")))]
unsafe fn getdtablesize() -> c_int {
libc::funcs::bsd44::getdtablesize()
}
let dirp = cfg.cwd().map(|c| c.as_ptr()).unwrap_or(ptr::null());
// temporary until unboxed closures land
let cfg = unsafe {
mem::transmute::<&ProcessConfig<K,V>,&'static ProcessConfig<K,V>>(cfg)
};
with_envp(cfg.env(), move|envp: *const c_void| {
with_argv(cfg.program(), cfg.args(), move|argv: *const *const libc::c_char| unsafe {
let (input, mut output) = try!(sys::os::pipe());
// We may use this in the child, so perform allocations before the
// fork
let devnull = b"/dev/null\0";
set_cloexec(output.fd());
let pid = fork();
if pid < 0 {
return Err(super::last_error())
} else if pid > 0 {
#[inline]
fn combine(arr: &[u8]) -> i32 {
let a = arr[0] as u32;
let b = arr[1] as u32;
let c = arr[2] as u32;
let d = arr[3] as u32;
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
}
let p = Process{ pid: pid };
drop(output);
let mut bytes = [0; 8];
return match input.read(&mut bytes) {
Ok(8) => {
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
let errno = combine(&bytes[0.. 4]);
assert!(p.wait(0).is_ok(), "wait(0) should either return Ok or panic");
Err(super::decode_error(errno))
}
Err(ref e) if e.kind == EndOfFile => Ok(p),
Err(e) => {
assert!(p.wait(0).is_ok(), "wait(0) should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {:?}", e)
},
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait(0).is_ok(), "wait(0) should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
};
}
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
let _ = libc::close(input.fd());
fn fail(output: &mut FileDesc) -> ! {
let errno = sys::os::errno() as u32;
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
];
// pipe I/O up to PIPE_BUF bytes should be atomic
assert!(output.write(&bytes).is_ok());
unsafe { libc::_exit(1) }
}
rustrt::rust_unset_sigprocmask();
// If a stdio file descriptor is set to be ignored (via a -1 file
// descriptor), then we don't actually close it, but rather open
// up /dev/null into that file descriptor. Otherwise, the first file
// descriptor opened up in the child would be numbered as one of the
// stdio file descriptors, which is likely to wreak havoc.
let setup = |src: Option<P>, dst: c_int| {
let src = match src {
None => {
let flags = if dst == libc::STDIN_FILENO {
libc::O_RDONLY
} else {
libc::O_RDWR
};
libc::open(devnull.as_ptr() as *const _, flags, 0)
}
Some(obj) => {
let fd = obj.as_inner().fd();
// Leak the memory and the file descriptor. We're in the
// child now an all our resources are going to be
// cleaned up very soon
mem::forget(obj);
fd
}
};
src != -1 && retry(|| dup2(src, dst)) != -1
};
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
// close all other fds
for fd in (3..getdtablesize()).rev() {
if fd != output.fd() {
let _ = close(fd as c_int);
}
}
match cfg.gid() {
Some(u) => {
if libc::setgid(u as libc::gid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
match cfg.uid() {
Some(u) => {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
extern {
fn setgroups(ngroups: libc::c_int,
ptr: *const libc::c_void) -> libc::c_int;
}
let _ = setgroups(0, ptr::null());
if libc::setuid(u as libc::uid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
if cfg.detach() {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if !dirp.is_null() && chdir(dirp) == -1 {
fail(&mut output);
}
if !envp.is_null() {
*sys::os::environ() = envp as *const _;
}
let _ = execvp(*argv, argv as *mut _);
fail(&mut output);
})
})
}
pub fn wait(&self, deadline: u64) -> IoResult<ProcessExit> {
use cmp;
use sync::mpsc::TryRecvError;
static mut WRITE_FD: libc::c_int = 0;
let mut status = 0 as c_int;
if deadline == 0 {
return match retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) }) {
-1 => panic!("unknown waitpid error: {:?}", super::last_error()),
_ => Ok(translate_status(status)),
}
}
// On unix, wait() and its friends have no timeout parameters, so there is
// no way to time out a thread in wait(). From some googling and some
// thinking, it appears that there are a few ways to handle timeouts in
// wait(), but the only real reasonable one for a multi-threaded program is
// to listen for SIGCHLD.
//
// With this in mind, the waiting mechanism with a timeout barely uses
// waitpid() at all. There are a few times that waitpid() is invoked with
// WNOHANG, but otherwise all the necessary blocking is done by waiting for
// a SIGCHLD to arrive (and that blocking has a timeout). Note, however,
// that waitpid() is still used to actually reap the child.
//
// Signal handling is super tricky in general, and this is no exception. Due
// to the async nature of SIGCHLD, we use the self-pipe trick to transmit
// data out of the signal handler to the rest of the application. The first
// idea would be to have each thread waiting with a timeout to read this
// output file descriptor, but a write() is akin to a signal(), not a
// broadcast(), so it would only wake up one thread, and possibly the wrong
// thread. Hence a helper thread is used.
//
// The helper thread here is responsible for farming requests for a
// waitpid() with a timeout, and then processing all of the wait requests.
// By guaranteeing that only this helper thread is reading half of the
// self-pipe, we're sure that we'll never lose a SIGCHLD. This helper thread
// is also responsible for select() to wait for incoming messages or
// incoming SIGCHLD messages, along with passing an appropriate timeout to
// select() to wake things up as necessary.
//
// The ordering of the following statements is also very purposeful. First,
// we must be guaranteed that the helper thread is booted and available to
// receive SIGCHLD signals, and then we must also ensure that we do a
// nonblocking waitpid() at least once before we go ask the sigchld helper.
// This prevents the race where the child exits, we boot the helper, and
// then we ask for the child's exit status (never seeing a sigchld).
//
// The actual communication between the helper thread and this thread is
// quite simple, just a channel moving data around.
HELPER.boot(register_sigchld, waitpid_helper);
match self.try_wait() {
Some(ret) => return Ok(ret),
None => {}
}
let (tx, rx) = channel();
HELPER.send(NewChild(self.pid, tx, deadline));
return match rx.recv() {
Ok(e) => Ok(e),
Err(..) => Err(timeout("wait timed out")),
};
// Register a new SIGCHLD handler, returning the reading half of the
// self-pipe plus the old handler registered (return value of sigaction).
//
// Be sure to set up the self-pipe first because as soon as we register a
// handler we're going to start receiving signals.
fn register_sigchld() -> (libc::c_int, c::sigaction) {
unsafe {
let mut pipes = [0; 2];
assert_eq!(libc::pipe(pipes.as_mut_ptr()), 0);
set_nonblocking(pipes[0], true);
set_nonblocking(pipes[1], true);
WRITE_FD = pipes[1];
let mut old: c::sigaction = mem::zeroed();
let mut new: c::sigaction = mem::zeroed();
new.sa_handler = sigchld_handler;
new.sa_flags = c::SA_NOCLDSTOP;
assert_eq!(c::sigaction(c::SIGCHLD, &new, &mut old), 0);
(pipes[0], old)
}
}
// Helper thread for processing SIGCHLD messages
fn waitpid_helper(input: libc::c_int,
messages: Receiver<Req>,
(read_fd, old): (libc::c_int, c::sigaction)) {
set_nonblocking(input, true);
let mut set: c::fd_set = unsafe { mem::zeroed() };
let mut tv: libc::timeval;
let mut active = Vec::<(libc::pid_t, Sender<ProcessExit>, u64)>::new();
let max = cmp::max(input, read_fd) + 1;
'outer: loop {
// Figure out the timeout of our syscall-to-happen. If we're waiting
// for some processes, then they'll have a timeout, otherwise we
// wait indefinitely for a message to arrive.
//
// FIXME: sure would be nice to not have to scan the entire array
let min = active.iter().map(|a| a.2).enumerate().min_by(|p| {
p.1
});
let (p, idx) = match min {
Some((idx, deadline)) => {
let now = sys::timer::now();
let ms = if now < deadline {deadline - now} else {0};
tv = ms_to_timeval(ms);
(&mut tv as *mut _, idx)
}
None => (ptr::null_mut(), -1),
};
// Wait for something to happen
c::fd_set(&mut set, input);
c::fd_set(&mut set, read_fd);
match unsafe { c::select(max, &mut set, ptr::null_mut(),
ptr::null_mut(), p) } {
// interrupted, retry
-1 if os::errno() == libc::EINTR as i32 => continue,
// We read something, break out and process
1 | 2 => {}
// Timeout, the pending request is removed
0 => {
drop(active.remove(idx));
continue
}
n => panic!("error in select {:?} ({:?})", os::errno(), n),
}
// Process any pending messages
if drain(input) {
loop {
match messages.try_recv() {
Ok(NewChild(pid, tx, deadline)) => {
active.push((pid, tx, deadline));
}
// Once we've been disconnected it means the main
// thread is exiting (at_exit has run). We could
// still have active waiter for other threads, so
// we're just going to drop them all on the floor.
// This means that they won't receive a "you're
// done" message in which case they'll be considered
// as timed out, but more generally errors will
// start propagating.
Err(TryRecvError::Disconnected) => {
break 'outer;
}
Err(TryRecvError::Empty) => break,
}
}
}
// If a child exited (somehow received SIGCHLD), then poll all
// children to see if any of them exited.
//
// We also attempt to be responsible netizens when dealing with
// SIGCHLD by invoking any previous SIGCHLD handler instead of just
// ignoring any previous SIGCHLD handler. Note that we don't provide
// a 1:1 mapping of our handler invocations to the previous handler
// invocations because we drain the `read_fd` entirely. This is
// probably OK because the kernel is already allowed to coalesce
// simultaneous signals, we're just doing some extra coalescing.
//
// Another point of note is that this likely runs the signal handler
// on a different thread than the one that received the signal. I
// *think* this is ok at this time.
//
// The main reason for doing this is to allow stdtest to run native
// tests as well. Both libgreen and libnative are running around
// with process timeouts, but libgreen should get there first
// (currently libuv doesn't handle old signal handlers).
if drain(read_fd) {
let i: usize = unsafe { mem::transmute(old.sa_handler) };
if i != 0 {
assert!(old.sa_flags & c::SA_SIGINFO == 0);
(old.sa_handler)(c::SIGCHLD);
}
// FIXME: sure would be nice to not have to scan the entire
// array...
active.retain(|&(pid, ref tx, _)| {
let pr = Process { pid: pid };
match pr.try_wait() {
Some(msg) => { tx.send(msg).unwrap(); false }
None => true,
}
});
}
}
// Once this helper thread is done, we re-register the old sigchld
// handler and close our intermediate file descriptors.
unsafe {
assert_eq!(c::sigaction(c::SIGCHLD, &old, ptr::null_mut()), 0);
let _ = libc::close(read_fd);
let _ = libc::close(WRITE_FD);
WRITE_FD = -1;
}
}
// Drain all pending data from the file descriptor, returning if any data
// could be drained. This requires that the file descriptor is in
// nonblocking mode.
fn drain(fd: libc::c_int) -> bool {
let mut ret = false;
loop {
let mut buf = [0u8; 1];
match unsafe {
libc::read(fd, buf.as_mut_ptr() as *mut libc::c_void,
buf.len() as libc::size_t)
} {
n if n > 0 => { ret = true; }
0 => return true,
-1 if wouldblock() => return ret,
n => panic!("bad read {} ({})",
io::Error::last_os_error(), n),
}
}
}
// Signal handler for SIGCHLD signals, must be async-signal-safe!
//
// This function will write to the writing half of the "self pipe" to wake
// up the helper thread if it's waiting. Note that this write must be
// nonblocking because if it blocks and the reader is the thread we
// interrupted, then we'll deadlock.
//
// When writing, if the write returns EWOULDBLOCK then we choose to ignore
// it. At that point we're guaranteed that there's something in the pipe
// which will wake up the other end at some point, so we just allow this
// signal to be coalesced with the pending signals on the pipe.
extern fn sigchld_handler(_signum: libc::c_int) {
let msg = 1;
match unsafe {
libc::write(WRITE_FD, &msg as *const _ as *const libc::c_void, 1)
} {
1 => {}
-1 if wouldblock() => {} // see above comments
n => panic!("bad error on write fd: {:?} {:?}", n, os::errno()),
}
}
}
pub fn try_wait(&self) -> Option<ProcessExit> {
let mut status = 0 as c_int;
match retry(|| unsafe {
c::waitpid(self.pid, &mut status, c::WNOHANG)
}) {
n if n == self.pid => Some(translate_status(status)),
0 => None,
n => panic!("unknown waitpid error `{:?}`: {:?}", n,
super::last_error()),
}
}
}
fn with_argv<T,F>(prog: &CString, args: &[CString],
cb: F)
-> T
where F : FnOnce(*const *const libc::c_char) -> T
{
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
// Convert the CStrings into an array of pointers. Note: the
// lifetime of the various CStrings involved is guaranteed to be
// larger than the lifetime of our invocation of cb, but this is
// technically unsafe as the callback could leak these pointers
// out of our scope.
ptrs.push(prog.as_ptr());
ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));
// Add a terminating null pointer (required by libc).
ptrs.push(ptr::null());
cb(ptrs.as_ptr())
}
fn with_envp<K,V,T,F>(env: Option<&HashMap<K, V>>,
cb: F)
-> T
where F : FnOnce(*const c_void) -> T,
K : BytesContainer + Eq + Hash,
V : BytesContainer
{
// On posixy systems we can pass a char** for envp, which is a
// null-terminated array of "k=v\0" strings. Since we must create
// these strings locally, yet expose a raw pointer to them, we
// create a temporary vector to own the CStrings that outlives the
// call to cb.
match env {
Some(env) => {
let mut tmps = Vec::with_capacity(env.len());
for pair in env {
let mut kv = Vec::new();
kv.push_all(pair.0.container_as_bytes());
kv.push('=' as u8);
kv.push_all(pair.1.container_as_bytes());
kv.push(0); // terminating null
tmps.push(kv);
}
// As with `with_argv`, this is unsafe, since cb could leak the pointers.
let mut ptrs: Vec<*const libc::c_char> =
tmps.iter()
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
.collect();
ptrs.push(ptr::null());
cb(ptrs.as_ptr() as *const c_void)
}
_ => cb(ptr::null())
}
}
fn translate_status(status: c_int) -> ProcessExit {
#![allow(non_snake_case)]
#[cfg(any(target_os = "linux", target_os = "android"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
}
#[cfg(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "bitrig",
target_os = "openbsd"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
}
if imp::WIFEXITED(status) {
ExitStatus(imp::WEXITSTATUS(status) as isize)
} else {
ExitSignal(imp::WTERMSIG(status) as isize)
}
}