-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
types.rs
1235 lines (1128 loc) · 46 KB
/
types.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#![allow(non_snake_case)]
use crate::{LateContext, LateLintPass, LintContext};
use rustc_ast::ast;
use rustc_attr as attr;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::{is_range_literal, ExprKind, Node};
use rustc_index::vec::Idx;
use rustc_middle::mir::interpret::{sign_extend, truncate};
use rustc_middle::ty::layout::{IntegerExt, SizeSkeleton};
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, AdtKind, Ty, TypeFoldable};
use rustc_span::source_map;
use rustc_span::symbol::sym;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::Abi;
use rustc_target::abi::{Integer, LayoutOf, TagEncoding, VariantIdx, Variants};
use rustc_target::spec::abi::Abi as SpecAbi;
use log::debug;
use std::cmp;
declare_lint! {
UNUSED_COMPARISONS,
Warn,
"comparisons made useless by limits of the types involved"
}
declare_lint! {
OVERFLOWING_LITERALS,
Deny,
"literal out of range for its type"
}
declare_lint! {
VARIANT_SIZE_DIFFERENCES,
Allow,
"detects enums with widely varying variant sizes"
}
#[derive(Copy, Clone)]
pub struct TypeLimits {
/// Id of the last visited negated expression
negated_expr_id: Option<hir::HirId>,
}
impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
impl TypeLimits {
pub fn new() -> TypeLimits {
TypeLimits { negated_expr_id: None }
}
}
/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
/// Returns `true` iff the lint was overridden.
fn lint_overflowing_range_endpoint<'tcx>(
cx: &LateContext<'tcx>,
lit: &hir::Lit,
lit_val: u128,
max: u128,
expr: &'tcx hir::Expr<'tcx>,
parent_expr: &'tcx hir::Expr<'tcx>,
ty: &str,
) -> bool {
// We only want to handle exclusive (`..`) ranges,
// which are represented as `ExprKind::Struct`.
let mut overwritten = false;
if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
if eps.len() != 2 {
return false;
}
// We can suggest using an inclusive range
// (`..=`) instead only if it is the `end` that is
// overflowing and only by 1.
if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
use ast::{LitIntType, LitKind};
// We need to preserve the literal's suffix,
// as it may determine typing information.
let suffix = match lit.node {
LitKind::Int(_, LitIntType::Signed(s)) => s.name_str().to_string(),
LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str().to_string(),
LitKind::Int(_, LitIntType::Unsuffixed) => "".to_string(),
_ => bug!(),
};
let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
err.span_suggestion(
parent_expr.span,
&"use an inclusive range instead",
suggestion,
Applicability::MachineApplicable,
);
err.emit();
overwritten = true;
}
});
}
}
overwritten
}
// For `isize` & `usize`, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms.
fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
match int_ty {
ast::IntTy::Isize => (i64::MIN as i128, i64::MAX as i128),
ast::IntTy::I8 => (i8::MIN as i64 as i128, i8::MAX as i128),
ast::IntTy::I16 => (i16::MIN as i64 as i128, i16::MAX as i128),
ast::IntTy::I32 => (i32::MIN as i64 as i128, i32::MAX as i128),
ast::IntTy::I64 => (i64::MIN as i128, i64::MAX as i128),
ast::IntTy::I128 => (i128::MIN as i128, i128::MAX),
}
}
fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
match uint_ty {
ast::UintTy::Usize => (u64::MIN as u128, u64::MAX as u128),
ast::UintTy::U8 => (u8::MIN as u128, u8::MAX as u128),
ast::UintTy::U16 => (u16::MIN as u128, u16::MAX as u128),
ast::UintTy::U32 => (u32::MIN as u128, u32::MAX as u128),
ast::UintTy::U64 => (u64::MIN as u128, u64::MAX as u128),
ast::UintTy::U128 => (u128::MIN, u128::MAX),
}
}
fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
let firstch = src.chars().next()?;
if firstch == '0' {
match src.chars().nth(1) {
Some('x' | 'b') => return Some(src),
_ => return None,
}
}
None
}
fn report_bin_hex_error(
cx: &LateContext<'_>,
expr: &hir::Expr<'_>,
ty: attr::IntType,
repr_str: String,
val: u128,
negative: bool,
) {
let size = Integer::from_attr(&cx.tcx, ty).size();
cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
let (t, actually) = match ty {
attr::IntType::SignedInt(t) => {
let actually = sign_extend(val, size) as i128;
(t.name_str(), actually.to_string())
}
attr::IntType::UnsignedInt(t) => {
let actually = truncate(val, size);
(t.name_str(), actually.to_string())
}
};
let mut err = lint.build(&format!("literal out of range for {}", t));
err.note(&format!(
"the literal `{}` (decimal `{}`) does not fit into \
the type `{}` and will become `{}{}`",
repr_str, val, t, actually, t
));
if let Some(sugg_ty) =
get_type_suggestion(&cx.typeck_results().node_type(expr.hir_id), val, negative)
{
if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
let (sans_suffix, _) = repr_str.split_at(pos);
err.span_suggestion(
expr.span,
&format!("consider using `{}` instead", sugg_ty),
format!("{}{}", sans_suffix, sugg_ty),
Applicability::MachineApplicable,
);
} else {
err.help(&format!("consider using `{}` instead", sugg_ty));
}
}
err.emit();
});
}
// This function finds the next fitting type and generates a suggestion string.
// It searches for fitting types in the following way (`X < Y`):
// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
// - `-iX` => `iY`
// - `uX` => `uY`
//
// No suggestion for: `isize`, `usize`.
fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
use rustc_ast::ast::IntTy::*;
use rustc_ast::ast::UintTy::*;
macro_rules! find_fit {
($ty:expr, $val:expr, $negative:expr,
$($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
{
let _neg = if negative { 1 } else { 0 };
match $ty {
$($type => {
$(if !negative && val <= uint_ty_range($utypes).1 {
return Some($utypes.name_str())
})*
$(if val <= int_ty_range($itypes).1 as u128 + _neg {
return Some($itypes.name_str())
})*
None
},)+
_ => None
}
}
}
}
match t.kind {
ty::Int(i) => find_fit!(i, val, negative,
I8 => [U8] => [I16, I32, I64, I128],
I16 => [U16] => [I32, I64, I128],
I32 => [U32] => [I64, I128],
I64 => [U64] => [I128],
I128 => [U128] => []),
ty::Uint(u) => find_fit!(u, val, negative,
U8 => [U8, U16, U32, U64, U128] => [],
U16 => [U16, U32, U64, U128] => [],
U32 => [U32, U64, U128] => [],
U64 => [U64, U128] => [],
U128 => [U128] => []),
_ => None,
}
}
fn lint_int_literal<'tcx>(
cx: &LateContext<'tcx>,
type_limits: &TypeLimits,
e: &'tcx hir::Expr<'tcx>,
lit: &hir::Lit,
t: ast::IntTy,
v: u128,
) {
let int_type = t.normalize(cx.sess().target.ptr_width);
let (min, max) = int_ty_range(int_type);
let max = max as u128;
let negative = type_limits.negated_expr_id == Some(e.hir_id);
// Detect literal value out of range [min, max] inclusive
// avoiding use of -min to prevent overflow/panic
if (negative && v > max + 1) || (!negative && v > max) {
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
return;
}
let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
if let hir::ExprKind::Struct(..) = par_e.kind {
if is_range_literal(cx.sess().source_map(), par_e)
&& lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
{
// The overflowing literal lint was overridden.
return;
}
}
}
cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
lint.build(&format!("literal out of range for `{}`", t.name_str()))
.note(&format!(
"the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
cx.sess()
.source_map()
.span_to_snippet(lit.span)
.expect("must get snippet from literal"),
t.name_str(),
min,
max,
))
.emit();
});
}
}
fn lint_uint_literal<'tcx>(
cx: &LateContext<'tcx>,
e: &'tcx hir::Expr<'tcx>,
lit: &hir::Lit,
t: ast::UintTy,
) {
let uint_type = t.normalize(cx.sess().target.ptr_width);
let (min, max) = uint_ty_range(uint_type);
let lit_val: u128 = match lit.node {
// _v is u8, within range by definition
ast::LitKind::Byte(_v) => return,
ast::LitKind::Int(v, _) => v,
_ => bug!(),
};
if lit_val < min || lit_val > max {
let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
match par_e.kind {
hir::ExprKind::Cast(..) => {
if let ty::Char = cx.typeck_results().expr_ty(par_e).kind {
cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
lint.build("only `u8` can be cast into `char`")
.span_suggestion(
par_e.span,
&"use a `char` literal instead",
format!("'\\u{{{:X}}}'", lit_val),
Applicability::MachineApplicable,
)
.emit();
});
return;
}
}
hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
let t = t.name_str();
if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
// The overflowing literal lint was overridden.
return;
}
}
_ => {}
}
}
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
return;
}
cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
lint.build(&format!("literal out of range for `{}`", t.name_str()))
.note(&format!(
"the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
cx.sess()
.source_map()
.span_to_snippet(lit.span)
.expect("must get snippet from literal"),
t.name_str(),
min,
max,
))
.emit()
});
}
}
fn lint_literal<'tcx>(
cx: &LateContext<'tcx>,
type_limits: &TypeLimits,
e: &'tcx hir::Expr<'tcx>,
lit: &hir::Lit,
) {
match cx.typeck_results().node_type(e.hir_id).kind {
ty::Int(t) => {
match lit.node {
ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
lint_int_literal(cx, type_limits, e, lit, t, v)
}
_ => bug!(),
};
}
ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
ty::Float(t) => {
let is_infinite = match lit.node {
ast::LitKind::Float(v, _) => match t {
ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
},
_ => bug!(),
};
if is_infinite == Ok(true) {
cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
lint.build(&format!("literal out of range for `{}`", t.name_str()))
.note(&format!(
"the literal `{}` does not fit into the type `{}` and will be converted to `std::{}::INFINITY`",
cx.sess()
.source_map()
.span_to_snippet(lit.span)
.expect("must get snippet from literal"),
t.name_str(),
t.name_str(),
))
.emit();
});
}
}
_ => {}
}
}
impl<'tcx> LateLintPass<'tcx> for TypeLimits {
fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
match e.kind {
hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
// propagate negation, if the negation itself isn't negated
if self.negated_expr_id != Some(e.hir_id) {
self.negated_expr_id = Some(expr.hir_id);
}
}
hir::ExprKind::Binary(binop, ref l, ref r) => {
if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
lint.build("comparison is useless due to type limits").emit()
});
}
}
hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
_ => {}
};
fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
match binop.node {
hir::BinOpKind::Lt => v > min && v <= max,
hir::BinOpKind::Le => v >= min && v < max,
hir::BinOpKind::Gt => v >= min && v < max,
hir::BinOpKind::Ge => v > min && v <= max,
hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
_ => bug!(),
}
}
fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
source_map::respan(
binop.span,
match binop.node {
hir::BinOpKind::Lt => hir::BinOpKind::Gt,
hir::BinOpKind::Le => hir::BinOpKind::Ge,
hir::BinOpKind::Gt => hir::BinOpKind::Lt,
hir::BinOpKind::Ge => hir::BinOpKind::Le,
_ => return binop,
},
)
}
fn check_limits(
cx: &LateContext<'_>,
binop: hir::BinOp,
l: &hir::Expr<'_>,
r: &hir::Expr<'_>,
) -> bool {
let (lit, expr, swap) = match (&l.kind, &r.kind) {
(&hir::ExprKind::Lit(_), _) => (l, r, true),
(_, &hir::ExprKind::Lit(_)) => (r, l, false),
_ => return true,
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
let norm_binop = if swap { rev_binop(binop) } else { binop };
match cx.typeck_results().node_type(expr.hir_id).kind {
ty::Int(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i128 = match lit.kind {
hir::ExprKind::Lit(ref li) => match li.node {
ast::LitKind::Int(
v,
ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
) => v as i128,
_ => return true,
},
_ => bug!(),
};
is_valid(norm_binop, lit_val, min, max)
}
ty::Uint(uint_ty) => {
let (min, max): (u128, u128) = uint_ty_range(uint_ty);
let lit_val: u128 = match lit.kind {
hir::ExprKind::Lit(ref li) => match li.node {
ast::LitKind::Int(v, _) => v,
_ => return true,
},
_ => bug!(),
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true,
}
}
fn is_comparison(binop: hir::BinOp) -> bool {
match binop.node {
hir::BinOpKind::Eq
| hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ne
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt => true,
_ => false,
}
}
}
}
declare_lint! {
IMPROPER_CTYPES,
Warn,
"proper use of libc types in foreign modules"
}
declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
declare_lint! {
IMPROPER_CTYPES_DEFINITIONS,
Warn,
"proper use of libc types in foreign item definitions"
}
declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
#[derive(Clone, Copy)]
crate enum CItemKind {
Declaration,
Definition,
}
struct ImproperCTypesVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
mode: CItemKind,
}
enum FfiResult<'tcx> {
FfiSafe,
FfiPhantom(Ty<'tcx>),
FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
}
/// Is type known to be non-null?
fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
let tcx = cx.tcx;
match ty.kind {
ty::FnPtr(_) => true,
ty::Ref(..) => true,
ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
ty::Adt(def, substs) if def.repr.transparent() && !def.is_union() => {
let guaranteed_nonnull_optimization = tcx
.get_attrs(def.did)
.iter()
.any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed));
if guaranteed_nonnull_optimization {
return true;
}
for variant in &def.variants {
if let Some(field) = variant.transparent_newtype_field(tcx) {
if ty_is_known_nonnull(cx, field.ty(tcx, substs), mode) {
return true;
}
}
}
false
}
_ => false,
}
}
/// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
/// If the type passed in was not scalar, returns None.
fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
let tcx = cx.tcx;
Some(match ty.kind {
ty::Adt(field_def, field_substs) => {
let inner_field_ty = {
let first_non_zst_ty =
field_def.variants.iter().filter_map(|v| v.transparent_newtype_field(tcx));
debug_assert_eq!(
first_non_zst_ty.clone().count(),
1,
"Wrong number of fields for transparent type"
);
first_non_zst_ty
.last()
.expect("No non-zst fields in transparent type.")
.ty(tcx, field_substs)
};
return get_nullable_type(cx, inner_field_ty);
}
ty::Int(ty) => tcx.mk_mach_int(ty),
ty::Uint(ty) => tcx.mk_mach_uint(ty),
ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
// As these types are always non-null, the nullable equivalent of
// Option<T> of these types are their raw pointer counterparts.
ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
ty::FnPtr(..) => {
// There is no nullable equivalent for Rust's function pointers -- you
// must use an Option<fn(..) -> _> to represent it.
ty
}
// We should only ever reach this case if ty_is_known_nonnull is extended
// to other types.
ref unhandled => {
debug!(
"get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
unhandled, ty
);
return None;
}
})
}
/// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
/// can, return the the type that `ty` can be safely converted to, otherwise return `None`.
/// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
/// FIXME: This duplicates code in codegen.
crate fn repr_nullable_ptr<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
ckind: CItemKind,
) -> Option<Ty<'tcx>> {
debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
if let ty::Adt(ty_def, substs) = ty.kind {
if ty_def.variants.len() != 2 {
return None;
}
let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
let fields = if variant_fields[0].is_empty() {
&variant_fields[1]
} else if variant_fields[1].is_empty() {
&variant_fields[0]
} else {
return None;
};
if fields.len() != 1 {
return None;
}
let field_ty = fields[0].ty(cx.tcx, substs);
if !ty_is_known_nonnull(cx, field_ty, ckind) {
return None;
}
// At this point, the field's type is known to be nonnull and the parent enum is Option-like.
// If the computed size for the field and the enum are different, the nonnull optimization isn't
// being applied (and we've got a problem somewhere).
let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
bug!("improper_ctypes: Option nonnull optimization not applied?");
}
// Return the nullable type this Option-like enum can be safely represented with.
let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
match (field_ty_scalar.valid_range.start(), field_ty_scalar.valid_range.end()) {
(0, _) => unreachable!("Non-null optimisation extended to a non-zero value."),
(1, _) => {
return Some(get_nullable_type(cx, field_ty).unwrap());
}
(start, end) => unreachable!("Unhandled start and end range: ({}, {})", start, end),
};
}
}
None
}
impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
/// Check if the type is array and emit an unsafe type lint.
fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
if let ty::Array(..) = ty.kind {
self.emit_ffi_unsafe_type_lint(
ty,
sp,
"passing raw arrays by value is not FFI-safe",
Some("consider passing a pointer to the array"),
);
true
} else {
false
}
}
/// Checks if the given field's type is "ffi-safe".
fn check_field_type_for_ffi(
&self,
cache: &mut FxHashSet<Ty<'tcx>>,
field: &ty::FieldDef,
substs: SubstsRef<'tcx>,
) -> FfiResult<'tcx> {
let field_ty = field.ty(self.cx.tcx, substs);
if field_ty.has_opaque_types() {
self.check_type_for_ffi(cache, field_ty)
} else {
let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
self.check_type_for_ffi(cache, field_ty)
}
}
/// Checks if the given `VariantDef`'s field types are "ffi-safe".
fn check_variant_for_ffi(
&self,
cache: &mut FxHashSet<Ty<'tcx>>,
ty: Ty<'tcx>,
def: &ty::AdtDef,
variant: &ty::VariantDef,
substs: SubstsRef<'tcx>,
) -> FfiResult<'tcx> {
use FfiResult::*;
if def.repr.transparent() {
// Can assume that only one field is not a ZST, so only check
// that field's type for FFI-safety.
if let Some(field) = variant.transparent_newtype_field(self.cx.tcx) {
self.check_field_type_for_ffi(cache, field, substs)
} else {
bug!("malformed transparent type");
}
} else {
// We can't completely trust repr(C) markings; make sure the fields are
// actually safe.
let mut all_phantom = !variant.fields.is_empty();
for field in &variant.fields {
match self.check_field_type_for_ffi(cache, &field, substs) {
FfiSafe => {
all_phantom = false;
}
FfiPhantom(..) if def.is_enum() => {
return FfiUnsafe {
ty,
reason: "this enum contains a PhantomData field".into(),
help: None,
};
}
FfiPhantom(..) => {}
r => return r,
}
}
if all_phantom { FfiPhantom(ty) } else { FfiSafe }
}
}
/// Checks if the given type is "ffi-safe" (has a stable, well-defined
/// representation which can be exported to C code).
fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
use FfiResult::*;
let tcx = self.cx.tcx;
// Protect against infinite recursion, for example
// `struct S(*mut S);`.
// FIXME: A recursion limit is necessary as well, for irregular
// recursive types.
if !cache.insert(ty) {
return FfiSafe;
}
match ty.kind {
ty::Adt(def, _) if def.is_box() && matches!(self.mode, CItemKind::Definition) => {
FfiSafe
}
ty::Adt(def, substs) => {
if def.is_phantom_data() {
return FfiPhantom(ty);
}
match def.adt_kind() {
AdtKind::Struct | AdtKind::Union => {
let kind = if def.is_struct() { "struct" } else { "union" };
if !def.repr.c() && !def.repr.transparent() {
return FfiUnsafe {
ty,
reason: format!("this {} has unspecified layout", kind),
help: Some(format!(
"consider adding a `#[repr(C)]` or \
`#[repr(transparent)]` attribute to this {}",
kind
)),
};
}
let is_non_exhaustive =
def.non_enum_variant().is_field_list_non_exhaustive();
if is_non_exhaustive && !def.did.is_local() {
return FfiUnsafe {
ty,
reason: format!("this {} is non-exhaustive", kind),
help: None,
};
}
if def.non_enum_variant().fields.is_empty() {
return FfiUnsafe {
ty,
reason: format!("this {} has no fields", kind),
help: Some(format!("consider adding a member to this {}", kind)),
};
}
self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
}
AdtKind::Enum => {
if def.variants.is_empty() {
// Empty enums are okay... although sort of useless.
return FfiSafe;
}
// Check for a repr() attribute to specify the size of the
// discriminant.
if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
// Special-case types like `Option<extern fn()>`.
if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
return FfiUnsafe {
ty,
reason: "enum has no representation hint".into(),
help: Some(
"consider adding a `#[repr(C)]`, \
`#[repr(transparent)]`, or integer `#[repr(...)]` \
attribute to this enum"
.into(),
),
};
}
}
if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
return FfiUnsafe {
ty,
reason: "this enum is non-exhaustive".into(),
help: None,
};
}
// Check the contained variants.
for variant in &def.variants {
let is_non_exhaustive = variant.is_field_list_non_exhaustive();
if is_non_exhaustive && !variant.def_id.is_local() {
return FfiUnsafe {
ty,
reason: "this enum has non-exhaustive variants".into(),
help: None,
};
}
match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
FfiSafe => (),
r => return r,
}
}
FfiSafe
}
}
}
ty::Char => FfiUnsafe {
ty,
reason: "the `char` type has no C equivalent".into(),
help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
},
ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
ty,
reason: "128-bit integers don't currently have a known stable ABI".into(),
help: None,
},
// Primitive types with a stable representation.
ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
ty::Slice(_) => FfiUnsafe {
ty,
reason: "slices have no C equivalent".into(),
help: Some("consider using a raw pointer instead".into()),
},
ty::Dynamic(..) => {
FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
}
ty::Str => FfiUnsafe {
ty,
reason: "string slices have no C equivalent".into(),
help: Some("consider using `*const u8` and a length instead".into()),
},
ty::Tuple(..) => FfiUnsafe {
ty,
reason: "tuples have unspecified layout".into(),
help: Some("consider using a struct instead".into()),
},
ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
if {
matches!(self.mode, CItemKind::Definition)
&& ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
} =>
{
FfiSafe
}
ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
self.check_type_for_ffi(cache, ty)
}
ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
ty::FnPtr(sig) => {
if self.is_internal_abi(sig.abi()) {
return FfiUnsafe {
ty,
reason: "this function pointer has Rust-specific calling convention".into(),
help: Some(
"consider using an `extern fn(...) -> ...` \
function pointer instead"
.into(),
),
};
}
let sig = tcx.erase_late_bound_regions(&sig);
if !sig.output().is_unit() {
let r = self.check_type_for_ffi(cache, sig.output());
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
for arg in sig.inputs() {
let r = self.check_type_for_ffi(cache, arg);
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
FfiSafe
}
ty::Foreign(..) => FfiSafe,
// While opaque types are checked for earlier, if a projection in a struct field
// normalizes to an opaque type, then it will reach this branch.
ty::Opaque(..) => {
FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
}
// `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
// so they are currently ignored for the purposes of this lint.
ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
FfiSafe
}
ty::Param(..)
| ty::Projection(..)
| ty::Infer(..)
| ty::Bound(..)
| ty::Error(_)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::Placeholder(..)
| ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
}
}
fn emit_ffi_unsafe_type_lint(
&mut self,
ty: Ty<'tcx>,
sp: Span,
note: &str,
help: Option<&str>,
) {
let lint = match self.mode {
CItemKind::Declaration => IMPROPER_CTYPES,
CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
};
self.cx.struct_span_lint(lint, sp, |lint| {
let item_description = match self.mode {
CItemKind::Declaration => "block",
CItemKind::Definition => "fn",
};
let mut diag = lint.build(&format!(
"`extern` {} uses type `{}`, which is not FFI-safe",
item_description, ty
));
diag.span_label(sp, "not FFI-safe");
if let Some(help) = help {
diag.help(help);
}
diag.note(note);
if let ty::Adt(def, _) = ty.kind {
if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
diag.span_note(sp, "the type is defined here");
}
}
diag.emit();
});
}