-
Notifications
You must be signed in to change notification settings - Fork 13.2k
/
Copy pathmod.rs
207 lines (190 loc) · 7.04 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_docs, bad_style)]
use prelude::v1::*;
use ffi::{OsStr, OsString};
use io::{self, ErrorKind};
use num::Zero;
use os::windows::ffi::{OsStrExt, OsStringExt};
use path::PathBuf;
use time::Duration;
#[macro_use] pub mod compat;
pub mod backtrace;
pub mod c;
pub mod condvar;
pub mod dynamic_lib;
pub mod ext;
pub mod fs;
pub mod handle;
pub mod mutex;
pub mod net;
pub mod os;
pub mod os_str;
pub mod pipe;
pub mod process;
pub mod rand;
pub mod rwlock;
pub mod stack_overflow;
pub mod thread;
pub mod thread_local;
pub mod time;
pub mod stdio;
#[cfg(not(test))]
pub fn init() {
::alloc::oom::set_oom_handler(oom_handler);
// See comment in sys/unix/mod.rs
fn oom_handler() -> ! {
use intrinsics;
use ptr;
let msg = "fatal runtime error: out of memory\n";
unsafe {
// WriteFile silently fails if it is passed an invalid handle, so
// there is no need to check the result of GetStdHandle.
c::WriteFile(c::GetStdHandle(c::STD_ERROR_HANDLE),
msg.as_ptr() as c::LPVOID,
msg.len() as c::DWORD,
ptr::null_mut(),
ptr::null_mut());
intrinsics::abort();
}
}
}
pub fn decode_error_kind(errno: i32) -> ErrorKind {
match errno as c::DWORD {
c::ERROR_ACCESS_DENIED => return ErrorKind::PermissionDenied,
c::ERROR_ALREADY_EXISTS => return ErrorKind::AlreadyExists,
c::ERROR_BROKEN_PIPE => return ErrorKind::BrokenPipe,
c::ERROR_FILE_NOT_FOUND => return ErrorKind::NotFound,
c::ERROR_PATH_NOT_FOUND => return ErrorKind::NotFound,
c::ERROR_NO_DATA => return ErrorKind::BrokenPipe,
c::ERROR_OPERATION_ABORTED => return ErrorKind::TimedOut,
_ => {}
}
match errno {
c::WSAEACCES => ErrorKind::PermissionDenied,
c::WSAEADDRINUSE => ErrorKind::AddrInUse,
c::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable,
c::WSAECONNABORTED => ErrorKind::ConnectionAborted,
c::WSAECONNREFUSED => ErrorKind::ConnectionRefused,
c::WSAECONNRESET => ErrorKind::ConnectionReset,
c::WSAEINVAL => ErrorKind::InvalidInput,
c::WSAENOTCONN => ErrorKind::NotConnected,
c::WSAEWOULDBLOCK => ErrorKind::WouldBlock,
c::WSAETIMEDOUT => ErrorKind::TimedOut,
_ => ErrorKind::Other,
}
}
pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> io::Result<Vec<u16>> {
fn inner(s: &OsStr) -> io::Result<Vec<u16>> {
let mut maybe_result: Vec<u16> = s.encode_wide().collect();
if maybe_result.iter().any(|&u| u == 0) {
return Err(io::Error::new(io::ErrorKind::InvalidInput,
"strings passed to WinAPI cannot contain NULs"));
}
maybe_result.push(0);
Ok(maybe_result)
}
inner(s.as_ref())
}
// Many Windows APIs follow a pattern of where we hand a buffer and then they
// will report back to us how large the buffer should be or how many bytes
// currently reside in the buffer. This function is an abstraction over these
// functions by making them easier to call.
//
// The first callback, `f1`, is yielded a (pointer, len) pair which can be
// passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
// The closure is expected to return what the syscall returns which will be
// interpreted by this function to determine if the syscall needs to be invoked
// again (with more buffer space).
//
// Once the syscall has completed (errors bail out early) the second closure is
// yielded the data which has been read from the syscall. The return value
// from this closure is then the return value of the function.
fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> io::Result<T>
where F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
F2: FnOnce(&[u16]) -> T
{
// Start off with a stack buf but then spill over to the heap if we end up
// needing more space.
let mut stack_buf = [0u16; 512];
let mut heap_buf = Vec::new();
unsafe {
let mut n = stack_buf.len();
loop {
let buf = if n <= stack_buf.len() {
&mut stack_buf[..]
} else {
let extra = n - heap_buf.len();
heap_buf.reserve(extra);
heap_buf.set_len(n);
&mut heap_buf[..]
};
// This function is typically called on windows API functions which
// will return the correct length of the string, but these functions
// also return the `0` on error. In some cases, however, the
// returned "correct length" may actually be 0!
//
// To handle this case we call `SetLastError` to reset it to 0 and
// then check it again if we get the "0 error value". If the "last
// error" is still 0 then we interpret it as a 0 length buffer and
// not an actual error.
c::SetLastError(0);
let k = match f1(buf.as_mut_ptr(), n as c::DWORD) {
0 if c::GetLastError() == 0 => 0,
0 => return Err(io::Error::last_os_error()),
n => n,
} as usize;
if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
n *= 2;
} else if k >= n {
n = k;
} else {
return Ok(f2(&buf[..k]))
}
}
}
}
fn os2path(s: &[u16]) -> PathBuf {
PathBuf::from(OsString::from_wide(s))
}
pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] {
match v.iter().position(|c| *c == 0) {
// don't include the 0
Some(i) => &v[..i],
None => v
}
}
fn cvt<I: PartialEq + Zero>(i: I) -> io::Result<I> {
if i == I::zero() {
Err(io::Error::last_os_error())
} else {
Ok(i)
}
}
fn dur2timeout(dur: Duration) -> c::DWORD {
// Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
// timeouts in windows APIs are typically u32 milliseconds. To translate, we
// have two pieces to take care of:
//
// * Nanosecond precision is rounded up
// * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
// (never time out).
dur.as_secs().checked_mul(1000).and_then(|ms| {
ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000)
}).and_then(|ms| {
ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 {1} else {0})
}).map(|ms| {
if ms > <c::DWORD>::max_value() as u64 {
c::INFINITE
} else {
ms as c::DWORD
}
}).unwrap_or(c::INFINITE)
}