-
Notifications
You must be signed in to change notification settings - Fork 12.7k
/
ast.rs
3626 lines (3272 loc) · 112 KB
/
ast.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! The Rust abstract syntax tree module.
//!
//! This module contains common structures forming the language AST.
//! Two main entities in the module are [`Item`] (which represents an AST element with
//! additional metadata), and [`ItemKind`] (which represents a concrete type and contains
//! information specific to the type of the item).
//!
//! Other module items worth mentioning:
//! - [`Ty`] and [`TyKind`]: A parsed Rust type.
//! - [`Expr`] and [`ExprKind`]: A parsed Rust expression.
//! - [`Pat`] and [`PatKind`]: A parsed Rust pattern. Patterns are often dual to expressions.
//! - [`Stmt`] and [`StmtKind`]: An executable action that does not return a value.
//! - [`FnDecl`], [`FnHeader`] and [`Param`]: Metadata associated with a function declaration.
//! - [`Generics`], [`GenericParam`], [`WhereClause`]: Metadata associated with generic parameters.
//! - [`EnumDef`] and [`Variant`]: Enum declaration.
//! - [`MetaItemLit`] and [`LitKind`]: Literal expressions.
//! - [`MacroDef`], [`MacStmtStyle`], [`MacCall`]: Macro definition and invocation.
//! - [`Attribute`]: Metadata associated with item.
//! - [`UnOp`], [`BinOp`], and [`BinOpKind`]: Unary and binary operators.
use std::borrow::Cow;
use std::{cmp, fmt, mem};
pub use GenericArgs::*;
pub use UnsafeSource::*;
pub use rustc_ast_ir::{Movability, Mutability, Pinnedness};
use rustc_data_structures::packed::Pu128;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_data_structures::sync::Lrc;
use rustc_macros::{Decodable, Encodable, HashStable_Generic};
pub use rustc_span::AttrId;
use rustc_span::source_map::{Spanned, respan};
use rustc_span::symbol::{Ident, Symbol, kw, sym};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span};
use thin_vec::{ThinVec, thin_vec};
pub use crate::format::*;
use crate::ptr::P;
use crate::token::{self, CommentKind, Delimiter};
use crate::tokenstream::{DelimSpan, LazyAttrTokenStream, TokenStream};
pub use crate::util::parser::ExprPrecedence;
/// A "Label" is an identifier of some point in sources,
/// e.g. in the following code:
///
/// ```rust
/// 'outer: loop {
/// break 'outer;
/// }
/// ```
///
/// `'outer` is a label.
#[derive(Clone, Encodable, Decodable, Copy, HashStable_Generic, Eq, PartialEq)]
pub struct Label {
pub ident: Ident,
}
impl fmt::Debug for Label {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "label({:?})", self.ident)
}
}
/// A "Lifetime" is an annotation of the scope in which variable
/// can be used, e.g. `'a` in `&'a i32`.
#[derive(Clone, Encodable, Decodable, Copy, PartialEq, Eq, Hash)]
pub struct Lifetime {
pub id: NodeId,
pub ident: Ident,
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "lifetime({}: {})", self.id, self)
}
}
impl fmt::Display for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.ident.name)
}
}
/// A "Path" is essentially Rust's notion of a name.
///
/// It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
///
/// E.g., `std::cmp::PartialEq`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Path {
pub span: Span,
/// The segments in the path: the things separated by `::`.
/// Global paths begin with `kw::PathRoot`.
pub segments: ThinVec<PathSegment>,
pub tokens: Option<LazyAttrTokenStream>,
}
impl PartialEq<Symbol> for Path {
#[inline]
fn eq(&self, symbol: &Symbol) -> bool {
self.segments.len() == 1 && { self.segments[0].ident.name == *symbol }
}
}
impl<CTX: rustc_span::HashStableContext> HashStable<CTX> for Path {
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
self.segments.len().hash_stable(hcx, hasher);
for segment in &self.segments {
segment.ident.hash_stable(hcx, hasher);
}
}
}
impl Path {
/// Convert a span and an identifier to the corresponding
/// one-segment path.
pub fn from_ident(ident: Ident) -> Path {
Path { segments: thin_vec![PathSegment::from_ident(ident)], span: ident.span, tokens: None }
}
pub fn is_global(&self) -> bool {
!self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
}
/// If this path is a single identifier with no arguments, does not ensure
/// that the path resolves to a const param, the caller should check this.
pub fn is_potential_trivial_const_arg(&self) -> bool {
self.segments.len() == 1 && self.segments[0].args.is_none()
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of types.
///
/// E.g., `std`, `String` or `Box<T>`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub ident: Ident,
pub id: NodeId,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`.
/// `None` means that no parameter list is supplied (`Path`),
/// `Some` means that parameter list is supplied (`Path<X, Y>`)
/// but it can be empty (`Path<>`).
/// `P` is used as a size optimization for the common case with no parameters.
pub args: Option<P<GenericArgs>>,
}
impl PathSegment {
pub fn from_ident(ident: Ident) -> Self {
PathSegment { ident, id: DUMMY_NODE_ID, args: None }
}
pub fn path_root(span: Span) -> Self {
PathSegment::from_ident(Ident::new(kw::PathRoot, span))
}
pub fn span(&self) -> Span {
match &self.args {
Some(args) => self.ident.span.to(args.span()),
None => self.ident.span,
}
}
}
/// The generic arguments and associated item constraints of a path segment.
///
/// E.g., `<A, B>` as in `Foo<A, B>` or `(A, B)` as in `Foo(A, B)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericArgs {
/// The `<'a, A, B, C>` in `foo::bar::baz::<'a, A, B, C>`.
AngleBracketed(AngleBracketedArgs),
/// The `(A, B)` and `C` in `Foo(A, B) -> C`.
Parenthesized(ParenthesizedArgs),
/// `(..)` in return type notation.
ParenthesizedElided(Span),
}
impl GenericArgs {
pub fn is_angle_bracketed(&self) -> bool {
matches!(self, AngleBracketed(..))
}
pub fn span(&self) -> Span {
match self {
AngleBracketed(data) => data.span,
Parenthesized(data) => data.span,
ParenthesizedElided(span) => *span,
}
}
}
/// Concrete argument in the sequence of generic args.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericArg {
/// `'a` in `Foo<'a>`.
Lifetime(Lifetime),
/// `Bar` in `Foo<Bar>`.
Type(P<Ty>),
/// `1` in `Foo<1>`.
Const(AnonConst),
}
impl GenericArg {
pub fn span(&self) -> Span {
match self {
GenericArg::Lifetime(lt) => lt.ident.span,
GenericArg::Type(ty) => ty.span,
GenericArg::Const(ct) => ct.value.span,
}
}
}
/// A path like `Foo<'a, T>`.
#[derive(Clone, Encodable, Decodable, Debug, Default)]
pub struct AngleBracketedArgs {
/// The overall span.
pub span: Span,
/// The comma separated parts in the `<...>`.
pub args: ThinVec<AngleBracketedArg>,
}
/// Either an argument for a generic parameter or a constraint on an associated item.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AngleBracketedArg {
/// A generic argument for a generic parameter.
Arg(GenericArg),
/// A constraint on an associated item.
Constraint(AssocItemConstraint),
}
impl AngleBracketedArg {
pub fn span(&self) -> Span {
match self {
AngleBracketedArg::Arg(arg) => arg.span(),
AngleBracketedArg::Constraint(constraint) => constraint.span,
}
}
}
impl Into<P<GenericArgs>> for AngleBracketedArgs {
fn into(self) -> P<GenericArgs> {
P(GenericArgs::AngleBracketed(self))
}
}
impl Into<P<GenericArgs>> for ParenthesizedArgs {
fn into(self) -> P<GenericArgs> {
P(GenericArgs::Parenthesized(self))
}
}
/// A path like `Foo(A, B) -> C`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct ParenthesizedArgs {
/// ```text
/// Foo(A, B) -> C
/// ^^^^^^^^^^^^^^
/// ```
pub span: Span,
/// `(A, B)`
pub inputs: ThinVec<P<Ty>>,
/// ```text
/// Foo(A, B) -> C
/// ^^^^^^
/// ```
pub inputs_span: Span,
/// `C`
pub output: FnRetTy,
}
impl ParenthesizedArgs {
pub fn as_angle_bracketed_args(&self) -> AngleBracketedArgs {
let args = self
.inputs
.iter()
.cloned()
.map(|input| AngleBracketedArg::Arg(GenericArg::Type(input)))
.collect();
AngleBracketedArgs { span: self.inputs_span, args }
}
}
pub use crate::node_id::{CRATE_NODE_ID, DUMMY_NODE_ID, NodeId};
/// Modifiers on a trait bound like `~const`, `?` and `!`.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug)]
pub struct TraitBoundModifiers {
pub constness: BoundConstness,
pub asyncness: BoundAsyncness,
pub polarity: BoundPolarity,
}
impl TraitBoundModifiers {
pub const NONE: Self = Self {
constness: BoundConstness::Never,
asyncness: BoundAsyncness::Normal,
polarity: BoundPolarity::Positive,
};
}
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericBound {
Trait(PolyTraitRef),
Outlives(Lifetime),
/// Precise capturing syntax: `impl Sized + use<'a>`
Use(ThinVec<PreciseCapturingArg>, Span),
}
impl GenericBound {
pub fn span(&self) -> Span {
match self {
GenericBound::Trait(t, ..) => t.span,
GenericBound::Outlives(l) => l.ident.span,
GenericBound::Use(_, span) => *span,
}
}
}
pub type GenericBounds = Vec<GenericBound>;
/// Specifies the enforced ordering for generic parameters. In the future,
/// if we wanted to relax this order, we could override `PartialEq` and
/// `PartialOrd`, to allow the kinds to be unordered.
#[derive(Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum ParamKindOrd {
Lifetime,
TypeOrConst,
}
impl fmt::Display for ParamKindOrd {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ParamKindOrd::Lifetime => "lifetime".fmt(f),
ParamKindOrd::TypeOrConst => "type and const".fmt(f),
}
}
}
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericParamKind {
/// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
Lifetime,
Type {
default: Option<P<Ty>>,
},
Const {
ty: P<Ty>,
/// Span of the `const` keyword.
kw_span: Span,
/// Optional default value for the const generic param.
default: Option<AnonConst>,
},
}
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct GenericParam {
pub id: NodeId,
pub ident: Ident,
pub attrs: AttrVec,
pub bounds: GenericBounds,
pub is_placeholder: bool,
pub kind: GenericParamKind,
pub colon_span: Option<Span>,
}
impl GenericParam {
pub fn span(&self) -> Span {
match &self.kind {
GenericParamKind::Lifetime | GenericParamKind::Type { default: None } => {
self.ident.span
}
GenericParamKind::Type { default: Some(ty) } => self.ident.span.to(ty.span),
GenericParamKind::Const { kw_span, default: Some(default), .. } => {
kw_span.to(default.value.span)
}
GenericParamKind::Const { kw_span, default: None, ty } => kw_span.to(ty.span),
}
}
}
/// Represents lifetime, type and const parameters attached to a declaration of
/// a function, enum, trait, etc.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Generics {
pub params: ThinVec<GenericParam>,
pub where_clause: WhereClause,
pub span: Span,
}
impl Default for Generics {
/// Creates an instance of `Generics`.
fn default() -> Generics {
Generics { params: ThinVec::new(), where_clause: Default::default(), span: DUMMY_SP }
}
}
/// A where-clause in a definition.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereClause {
/// `true` if we ate a `where` token.
///
/// This can happen if we parsed no predicates, e.g., `struct Foo where {}`.
/// This allows us to pretty-print accurately and provide correct suggestion diagnostics.
pub has_where_token: bool,
pub predicates: ThinVec<WherePredicate>,
pub span: Span,
}
impl WhereClause {
pub fn is_empty(&self) -> bool {
!self.has_where_token && self.predicates.is_empty()
}
}
impl Default for WhereClause {
fn default() -> WhereClause {
WhereClause { has_where_token: false, predicates: ThinVec::new(), span: DUMMY_SP }
}
}
/// A single predicate in a where-clause.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum WherePredicate {
/// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`).
BoundPredicate(WhereBoundPredicate),
/// A lifetime predicate (e.g., `'a: 'b + 'c`).
RegionPredicate(WhereRegionPredicate),
/// An equality predicate (unsupported).
EqPredicate(WhereEqPredicate),
}
impl WherePredicate {
pub fn span(&self) -> Span {
match self {
WherePredicate::BoundPredicate(p) => p.span,
WherePredicate::RegionPredicate(p) => p.span,
WherePredicate::EqPredicate(p) => p.span,
}
}
}
/// A type bound.
///
/// E.g., `for<'c> Foo: Send + Clone + 'c`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereBoundPredicate {
pub span: Span,
/// Any generics from a `for` binding.
pub bound_generic_params: ThinVec<GenericParam>,
/// The type being bounded.
pub bounded_ty: P<Ty>,
/// Trait and lifetime bounds (`Clone + Send + 'static`).
pub bounds: GenericBounds,
}
/// A lifetime predicate.
///
/// E.g., `'a: 'b + 'c`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereRegionPredicate {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: GenericBounds,
}
/// An equality predicate (unsupported).
///
/// E.g., `T = int`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereEqPredicate {
pub span: Span,
pub lhs_ty: P<Ty>,
pub rhs_ty: P<Ty>,
}
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Crate {
pub attrs: AttrVec,
pub items: ThinVec<P<Item>>,
pub spans: ModSpans,
/// Must be equal to `CRATE_NODE_ID` after the crate root is expanded, but may hold
/// expansion placeholders or an unassigned value (`DUMMY_NODE_ID`) before that.
pub id: NodeId,
pub is_placeholder: bool,
}
/// A semantic representation of a meta item. A meta item is a slightly
/// restricted form of an attribute -- it can only contain expressions in
/// certain leaf positions, rather than arbitrary token streams -- that is used
/// for most built-in attributes.
///
/// E.g., `#[test]`, `#[derive(..)]`, `#[rustfmt::skip]` or `#[feature = "foo"]`.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct MetaItem {
pub unsafety: Safety,
pub path: Path,
pub kind: MetaItemKind,
pub span: Span,
}
/// The meta item kind, containing the data after the initial path.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum MetaItemKind {
/// Word meta item.
///
/// E.g., `#[test]`, which lacks any arguments after `test`.
Word,
/// List meta item.
///
/// E.g., `#[derive(..)]`, where the field represents the `..`.
List(ThinVec<MetaItemInner>),
/// Name value meta item.
///
/// E.g., `#[feature = "foo"]`, where the field represents the `"foo"`.
NameValue(MetaItemLit),
}
/// Values inside meta item lists.
///
/// E.g., each of `Clone`, `Copy` in `#[derive(Clone, Copy)]`.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum MetaItemInner {
/// A full MetaItem, for recursive meta items.
MetaItem(MetaItem),
/// A literal.
///
/// E.g., `"foo"`, `64`, `true`.
Lit(MetaItemLit),
}
/// A block (`{ .. }`).
///
/// E.g., `{ .. }` as in `fn foo() { .. }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Block {
/// The statements in the block.
pub stmts: ThinVec<Stmt>,
pub id: NodeId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`.
pub rules: BlockCheckMode,
pub span: Span,
pub tokens: Option<LazyAttrTokenStream>,
/// The following *isn't* a parse error, but will cause multiple errors in following stages.
/// ```compile_fail
/// let x = {
/// foo: var
/// };
/// ```
/// #34255
pub could_be_bare_literal: bool,
}
/// A match pattern.
///
/// Patterns appear in match statements and some other contexts, such as `let` and `if let`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Pat {
pub id: NodeId,
pub kind: PatKind,
pub span: Span,
pub tokens: Option<LazyAttrTokenStream>,
}
impl Pat {
/// Attempt reparsing the pattern as a type.
/// This is intended for use by diagnostics.
pub fn to_ty(&self) -> Option<P<Ty>> {
let kind = match &self.kind {
// In a type expression `_` is an inference variable.
PatKind::Wild => TyKind::Infer,
// An IDENT pattern with no binding mode would be valid as path to a type. E.g. `u32`.
PatKind::Ident(BindingMode::NONE, ident, None) => {
TyKind::Path(None, Path::from_ident(*ident))
}
PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
PatKind::MacCall(mac) => TyKind::MacCall(mac.clone()),
// `&mut? P` can be reinterpreted as `&mut? T` where `T` is `P` reparsed as a type.
PatKind::Ref(pat, mutbl) => {
pat.to_ty().map(|ty| TyKind::Ref(None, MutTy { ty, mutbl: *mutbl }))?
}
// A slice/array pattern `[P]` can be reparsed as `[T]`, an unsized array,
// when `P` can be reparsed as a type `T`.
PatKind::Slice(pats) if let [pat] = pats.as_slice() => {
pat.to_ty().map(TyKind::Slice)?
}
// A tuple pattern `(P0, .., Pn)` can be reparsed as `(T0, .., Tn)`
// assuming `T0` to `Tn` are all syntactically valid as types.
PatKind::Tuple(pats) => {
let mut tys = ThinVec::with_capacity(pats.len());
// FIXME(#48994) - could just be collected into an Option<Vec>
for pat in pats {
tys.push(pat.to_ty()?);
}
TyKind::Tup(tys)
}
_ => return None,
};
Some(P(Ty { kind, id: self.id, span: self.span, tokens: None }))
}
/// Walk top-down and call `it` in each place where a pattern occurs
/// starting with the root pattern `walk` is called on. If `it` returns
/// false then we will descend no further but siblings will be processed.
pub fn walk(&self, it: &mut impl FnMut(&Pat) -> bool) {
if !it(self) {
return;
}
match &self.kind {
// Walk into the pattern associated with `Ident` (if any).
PatKind::Ident(_, _, Some(p)) => p.walk(it),
// Walk into each field of struct.
PatKind::Struct(_, _, fields, _) => fields.iter().for_each(|field| field.pat.walk(it)),
// Sequence of patterns.
PatKind::TupleStruct(_, _, s)
| PatKind::Tuple(s)
| PatKind::Slice(s)
| PatKind::Or(s) => s.iter().for_each(|p| p.walk(it)),
// Trivial wrappers over inner patterns.
PatKind::Box(s) | PatKind::Deref(s) | PatKind::Ref(s, _) | PatKind::Paren(s) => {
s.walk(it)
}
// These patterns do not contain subpatterns, skip.
PatKind::Wild
| PatKind::Rest
| PatKind::Never
| PatKind::Lit(_)
| PatKind::Range(..)
| PatKind::Ident(..)
| PatKind::Path(..)
| PatKind::MacCall(_)
| PatKind::Err(_) => {}
}
}
/// Is this a `..` pattern?
pub fn is_rest(&self) -> bool {
matches!(self.kind, PatKind::Rest)
}
/// Whether this could be a never pattern, taking into account that a macro invocation can
/// return a never pattern. Used to inform errors during parsing.
pub fn could_be_never_pattern(&self) -> bool {
let mut could_be_never_pattern = false;
self.walk(&mut |pat| match &pat.kind {
PatKind::Never | PatKind::MacCall(_) => {
could_be_never_pattern = true;
false
}
PatKind::Or(s) => {
could_be_never_pattern = s.iter().all(|p| p.could_be_never_pattern());
false
}
_ => true,
});
could_be_never_pattern
}
/// Whether this contains a `!` pattern. This in particular means that a feature gate error will
/// be raised if the feature is off. Used to avoid gating the feature twice.
pub fn contains_never_pattern(&self) -> bool {
let mut contains_never_pattern = false;
self.walk(&mut |pat| {
if matches!(pat.kind, PatKind::Never) {
contains_never_pattern = true;
}
true
});
contains_never_pattern
}
/// Return a name suitable for diagnostics.
pub fn descr(&self) -> Option<String> {
match &self.kind {
PatKind::Wild => Some("_".to_string()),
PatKind::Ident(BindingMode::NONE, ident, None) => Some(format!("{ident}")),
PatKind::Ref(pat, mutbl) => pat.descr().map(|d| format!("&{}{d}", mutbl.prefix_str())),
_ => None,
}
}
}
/// A single field in a struct pattern.
///
/// Patterns like the fields of `Foo { x, ref y, ref mut z }`
/// are treated the same as `x: x, y: ref y, z: ref mut z`,
/// except when `is_shorthand` is true.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct PatField {
/// The identifier for the field.
pub ident: Ident,
/// The pattern the field is destructured to.
pub pat: P<Pat>,
pub is_shorthand: bool,
pub attrs: AttrVec,
pub id: NodeId,
pub span: Span,
pub is_placeholder: bool,
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum ByRef {
Yes(Mutability),
No,
}
impl ByRef {
#[must_use]
pub fn cap_ref_mutability(mut self, mutbl: Mutability) -> Self {
if let ByRef::Yes(old_mutbl) = &mut self {
*old_mutbl = cmp::min(*old_mutbl, mutbl);
}
self
}
}
/// The mode of a binding (`mut`, `ref mut`, etc).
/// Used for both the explicit binding annotations given in the HIR for a binding
/// and the final binding mode that we infer after type inference/match ergonomics.
/// `.0` is the by-reference mode (`ref`, `ref mut`, or by value),
/// `.1` is the mutability of the binding.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub struct BindingMode(pub ByRef, pub Mutability);
impl BindingMode {
pub const NONE: Self = Self(ByRef::No, Mutability::Not);
pub const REF: Self = Self(ByRef::Yes(Mutability::Not), Mutability::Not);
pub const MUT: Self = Self(ByRef::No, Mutability::Mut);
pub const REF_MUT: Self = Self(ByRef::Yes(Mutability::Mut), Mutability::Not);
pub const MUT_REF: Self = Self(ByRef::Yes(Mutability::Not), Mutability::Mut);
pub const MUT_REF_MUT: Self = Self(ByRef::Yes(Mutability::Mut), Mutability::Mut);
pub fn prefix_str(self) -> &'static str {
match self {
Self::NONE => "",
Self::REF => "ref ",
Self::MUT => "mut ",
Self::REF_MUT => "ref mut ",
Self::MUT_REF => "mut ref ",
Self::MUT_REF_MUT => "mut ref mut ",
}
}
}
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum RangeEnd {
/// `..=` or `...`
Included(RangeSyntax),
/// `..`
Excluded,
}
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum RangeSyntax {
/// `...`
DotDotDot,
/// `..=`
DotDotEq,
}
/// All the different flavors of pattern that Rust recognizes.
//
// Adding a new variant? Please update `test_pat` in `tests/ui/macros/stringify.rs`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum PatKind {
/// Represents a wildcard pattern (`_`).
Wild,
/// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`),
/// or a unit struct/variant pattern, or a const pattern (in the last two cases the third
/// field must be `None`). Disambiguation cannot be done with parser alone, so it happens
/// during name resolution.
Ident(BindingMode, Ident, Option<P<Pat>>),
/// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
Struct(Option<P<QSelf>>, Path, ThinVec<PatField>, PatFieldsRest),
/// A tuple struct/variant pattern (`Variant(x, y, .., z)`).
TupleStruct(Option<P<QSelf>>, Path, ThinVec<P<Pat>>),
/// An or-pattern `A | B | C`.
/// Invariant: `pats.len() >= 2`.
Or(ThinVec<P<Pat>>),
/// A possibly qualified path pattern.
/// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants
/// or associated constants. Qualified path patterns `<A>::B::C`/`<A as Trait>::B::C` can
/// only legally refer to associated constants.
Path(Option<P<QSelf>>, Path),
/// A tuple pattern (`(a, b)`).
Tuple(ThinVec<P<Pat>>),
/// A `box` pattern.
Box(P<Pat>),
/// A `deref` pattern (currently `deref!()` macro-based syntax).
Deref(P<Pat>),
/// A reference pattern (e.g., `&mut (a, b)`).
Ref(P<Pat>, Mutability),
/// A literal.
Lit(P<Expr>),
/// A range pattern (e.g., `1...2`, `1..2`, `1..`, `..2`, `1..=2`, `..=2`).
Range(Option<P<Expr>>, Option<P<Expr>>, Spanned<RangeEnd>),
/// A slice pattern `[a, b, c]`.
Slice(ThinVec<P<Pat>>),
/// A rest pattern `..`.
///
/// Syntactically it is valid anywhere.
///
/// Semantically however, it only has meaning immediately inside:
/// - a slice pattern: `[a, .., b]`,
/// - a binding pattern immediately inside a slice pattern: `[a, r @ ..]`,
/// - a tuple pattern: `(a, .., b)`,
/// - a tuple struct/variant pattern: `$path(a, .., b)`.
///
/// In all of these cases, an additional restriction applies,
/// only one rest pattern may occur in the pattern sequences.
Rest,
// A never pattern `!`.
Never,
/// Parentheses in patterns used for grouping (i.e., `(PAT)`).
Paren(P<Pat>),
/// A macro pattern; pre-expansion.
MacCall(P<MacCall>),
/// Placeholder for a pattern that wasn't syntactically well formed in some way.
Err(ErrorGuaranteed),
}
/// Whether the `..` is present in a struct fields pattern.
#[derive(Clone, Copy, Encodable, Decodable, Debug, PartialEq)]
pub enum PatFieldsRest {
/// `module::StructName { field, ..}`
Rest,
/// `module::StructName { field }`
None,
}
/// The kind of borrow in an `AddrOf` expression,
/// e.g., `&place` or `&raw const place`.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum BorrowKind {
/// A normal borrow, `&$expr` or `&mut $expr`.
/// The resulting type is either `&'a T` or `&'a mut T`
/// where `T = typeof($expr)` and `'a` is some lifetime.
Ref,
/// A raw borrow, `&raw const $expr` or `&raw mut $expr`.
/// The resulting type is either `*const T` or `*mut T`
/// where `T = typeof($expr)`.
Raw,
}
#[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum BinOpKind {
/// The `+` operator (addition)
Add,
/// The `-` operator (subtraction)
Sub,
/// The `*` operator (multiplication)
Mul,
/// The `/` operator (division)
Div,
/// The `%` operator (modulus)
Rem,
/// The `&&` operator (logical and)
And,
/// The `||` operator (logical or)
Or,
/// The `^` operator (bitwise xor)
BitXor,
/// The `&` operator (bitwise and)
BitAnd,
/// The `|` operator (bitwise or)
BitOr,
/// The `<<` operator (shift left)
Shl,
/// The `>>` operator (shift right)
Shr,
/// The `==` operator (equality)
Eq,
/// The `<` operator (less than)
Lt,
/// The `<=` operator (less than or equal to)
Le,
/// The `!=` operator (not equal to)
Ne,
/// The `>=` operator (greater than or equal to)
Ge,
/// The `>` operator (greater than)
Gt,
}
impl BinOpKind {
pub fn as_str(&self) -> &'static str {
use BinOpKind::*;
match self {
Add => "+",
Sub => "-",
Mul => "*",
Div => "/",
Rem => "%",
And => "&&",
Or => "||",
BitXor => "^",
BitAnd => "&",
BitOr => "|",
Shl => "<<",
Shr => ">>",
Eq => "==",
Lt => "<",
Le => "<=",
Ne => "!=",
Ge => ">=",
Gt => ">",
}
}
pub fn is_lazy(&self) -> bool {
matches!(self, BinOpKind::And | BinOpKind::Or)
}
pub fn is_comparison(self) -> bool {
crate::util::parser::AssocOp::from_ast_binop(self).is_comparison()
}
/// Returns `true` if the binary operator takes its arguments by value.
pub fn is_by_value(self) -> bool {
!self.is_comparison()
}
}
pub type BinOp = Spanned<BinOpKind>;
/// Unary operator.
///
/// Note that `&data` is not an operator, it's an `AddrOf` expression.
#[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum UnOp {
/// The `*` operator for dereferencing
Deref,
/// The `!` operator for logical inversion
Not,
/// The `-` operator for negation
Neg,
}
impl UnOp {
pub fn as_str(&self) -> &'static str {
match self {
UnOp::Deref => "*",
UnOp::Not => "!",
UnOp::Neg => "-",
}
}
/// Returns `true` if the unary operator takes its argument by value.
pub fn is_by_value(self) -> bool {
matches!(self, Self::Neg | Self::Not)
}
}
/// A statement. No `attrs` or `tokens` fields because each `StmtKind` variant
/// contains an AST node with those fields. (Except for `StmtKind::Empty`,
/// which never has attrs or tokens)
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Stmt {
pub id: NodeId,
pub kind: StmtKind,
pub span: Span,
}
impl Stmt {