Skip to content

Commit

Permalink
Replace RawVec<T> with Box<[MaybeUninit<T>]>
Browse files Browse the repository at this point in the history
Fix soundness problems/make miri-test-libstd pass

Co-authored-by: Conrad Ludgate <conradludgate@gmail.com>
  • Loading branch information
conradludgate authored and saethlin committed Jul 26, 2022
1 parent babff22 commit 2efcdf8
Show file tree
Hide file tree
Showing 22 changed files with 640 additions and 696 deletions.
399 changes: 399 additions & 0 deletions library/alloc/src/box_storage.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,399 @@
#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]

use core::alloc::LayoutError;
use core::cmp;
use core::intrinsics;
use core::mem;
use core::mem::MaybeUninit;
use core::ptr::NonNull;

#[cfg(not(no_global_oom_handling))]
use crate::alloc::handle_alloc_error;
use crate::alloc::{Allocator, Layout};
use crate::boxed::Box;
use crate::collections::TryReserveError;
use crate::collections::TryReserveErrorKind::*;

#[cfg(test)]
mod tests;

#[cfg(not(no_global_oom_handling))]
pub(crate) enum AllocInit {
/// The contents of the new memory are uninitialized.
Uninitialized,
/// The new memory is guaranteed to be zeroed.
Zeroed,
}

pub(crate) trait BoxStorage: Sized {
// Tiny Vecs are dumb. Skip to:
// - 8 if the element size is 1, because any heap allocators is likely
// to round up a request of less than 8 bytes to at least 8 bytes.
// - 4 if elements are moderate-sized (<= 1 KiB).
// - 1 otherwise, to avoid wasting too much space for very short Vecs.
const MIN_NON_ZERO_CAP: usize;

/// Gets the capacity of the allocation.
///
/// This will always be `usize::MAX` if `T` is zero-sized.
fn capacity(&self) -> usize;

/// Ensures that the buffer contains at least enough space to hold `len +
/// additional` elements. If it doesn't already have enough capacity, will
/// reallocate enough space plus comfortable slack space to get amortized
/// *O*(1) behavior. Will limit this behavior if it would needlessly cause
/// itself to panic.
///
/// If `len` exceeds `self.capacity()`, this may fail to actually allocate
/// the requested space. This is not really unsafe, but the unsafe
/// code *you* write that relies on the behavior of this function may break.
///
/// This is ideal for implementing a bulk-push operation like `extend`.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM.
#[cfg(not(no_global_oom_handling))]
#[inline]
fn reserve(&mut self, len: usize, additional: usize) {
// Callers expect this function to be very cheap when there is already sufficient capacity.
// Therefore, we move all the resizing and error-handling logic from grow_amortized and
// handle_reserve behind a call, while making sure that this function is likely to be
// inlined as just a comparison and a call if the comparison fails.
#[cold]
fn do_reserve_and_handle<T: BoxStorage>(slf: &mut T, len: usize, additional: usize) {
handle_reserve(slf.grow_amortized(len, additional));
}

if self.needs_to_grow(len, additional) {
do_reserve_and_handle(self, len, additional);
}
}

/// Returns if the buffer needs to grow to fulfill the needed extra capacity.
/// Mainly used to make inlining reserve-calls possible without inlining `grow`.
fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
additional > self.capacity().wrapping_sub(len)
}

/// A specialized version of `reserve()` used only by the hot and
/// oft-instantiated `Vec::push()`, which does its own capacity check.
#[cfg(not(no_global_oom_handling))]
#[inline(never)]
fn reserve_for_push(&mut self, len: usize) {
handle_reserve(self.grow_amortized(len, 1));
}

/// Shrinks the buffer down to the specified capacity. If the given amount
/// is 0, actually completely deallocates.
///
/// # Panics
///
/// Panics if the given amount is *larger* than the current capacity.
///
/// # Aborts
///
/// Aborts on OOM.
#[cfg(not(no_global_oom_handling))]
fn shrink_to_fit(&mut self, cap: usize) {
handle_reserve(self.shrink(cap));
}

/// The same as `reserve`, but returns on errors instead of panicking or aborting.
fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
if self.needs_to_grow(len, additional) {
self.grow_amortized(len, additional)
} else {
Ok(())
}
}

/// Ensures that the buffer contains at least enough space to hold `len +
/// additional` elements. If it doesn't already, will reallocate the
/// minimum possible amount of memory necessary. Generally this will be
/// exactly the amount of memory necessary, but in principle the allocator
/// is free to give back more than we asked for.
///
/// If `len` exceeds `self.capacity()`, this may fail to actually allocate
/// the requested space. This is not really unsafe, but the unsafe code
/// *you* write that relies on the behavior of this function may break.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM.
#[cfg(not(no_global_oom_handling))]
fn reserve_exact(&mut self, len: usize, additional: usize) {
handle_reserve(self.try_reserve_exact(len, additional));
}

/// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
fn try_reserve_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
}

fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>;
fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>;
fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError>;
}

impl<T, A: Allocator> BoxStorage for Box<[mem::MaybeUninit<T>], A> {
const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
8
} else if mem::size_of::<T>() <= 1024 {
4
} else {
1
};

#[inline(always)]
fn capacity(&self) -> usize {
if mem::size_of::<T>() == 0 {
usize::MAX
} else {
unsafe {
let ptr: *const usize = core::mem::transmute(self);
*ptr.add(1)
}
}
}

// This method is usually instantiated many times. So we want it to be as
// small as possible, to improve compile times. But we also want as much of
// its contents to be statically computable as possible, to make the
// generated code run faster. Therefore, this method is carefully written
// so that all of the code that depends on `T` is within it, while as much
// of the code that doesn't depend on `T` as possible is in functions that
// are non-generic over `T`.
fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
// This is ensured by the calling contexts.
debug_assert!(additional > 0);

if mem::size_of::<T>() == 0 {
// Since we return a capacity of `usize::MAX` when `elem_size` is
// 0, getting to here necessarily means the boxed-slice is overfull.
return Err(CapacityOverflow.into());
}

// Nothing we can really do about these checks, sadly.
let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;

// This guarantees exponential growth. The doubling cannot overflow
// because `cap <= isize::MAX` and the type of `cap` is `usize`.
let cap = self.len();
let cap = cmp::max(cap * 2, required_cap);
let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);

replace(self, |current_memory, alloc| {
let new_layout = Layout::array::<T>(cap);
// `finish_grow` is non-generic over `T`.
let ptr = finish_grow(new_layout, current_memory, alloc)?;
Ok(Some((ptr, cap)))
})
}

// The constraints on this method are much the same as those on
// `grow_amortized`, but this method is usually instantiated less often so
// it's less critical.
fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
if mem::size_of::<T>() == 0 {
// Since we return a capacity of `usize::MAX` when the type size is
// 0, getting to here necessarily means the boxed-slice is overfull.
return Err(CapacityOverflow.into());
}
let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;

replace(self, |current_memory, alloc| {
let new_layout = Layout::array::<T>(cap);
// `finish_grow` is non-generic over `T`.
let ptr = finish_grow(new_layout, current_memory, alloc)?;
Ok(Some((ptr, cap)))
})
}

fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
replace(self, |current_memory, alloc| {
let (ptr, layout) = if let Some(mem) = current_memory { mem } else { return Ok(None) };

let ptr = unsafe {
// `Layout::array` cannot overflow here because it would have
// overflowed earlier when capacity was larger.
let new_layout = Layout::array::<T>(cap).unwrap_unchecked();
alloc
.shrink(ptr, layout, new_layout)
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
};
Ok(Some((ptr, cap)))
})
}
}

pub(crate) unsafe fn storage_from_raw_parts_in<T, A: Allocator>(
ptr: *mut T,
len: usize,
alloc: A,
) -> Box<[MaybeUninit<T>], A> {
unsafe {
let raw = core::slice::from_raw_parts_mut(ptr.cast(), len);
Box::from_raw_in(raw, alloc)
}
}

fn replace<T, A: Allocator>(
dst: &mut Box<[mem::MaybeUninit<T>], A>,
f: impl FnOnce(
Option<(NonNull<u8>, Layout)>,
&A,
) -> Result<Option<(NonNull<[u8]>, usize)>, TryReserveError>,
) -> Result<(), TryReserveError> {
unsafe {
let (old, alloc) = Box::into_raw_with_allocator(core::ptr::read(dst));
let current_memory = slice_layout(&mut *old);
match f(current_memory, &alloc) {
Ok(None) => Ok(()),
Ok(Some((ptr, len))) => {
// hack because we don't have access to box here :()

// Create a raw pointer slice to the new allocation
let raw =
core::ptr::slice_from_raw_parts_mut(ptr.as_ptr().cast::<MaybeUninit<T>>(), len);

// Create a new Box from our new allocation
let this = Box::from_raw_in(raw, alloc);
core::ptr::write(dst, this);
Ok(())
}
Err(err) => Err(err),
}
}
}

fn slice_layout<T>(slice: &mut [MaybeUninit<T>]) -> Option<(NonNull<u8>, Layout)> {
if mem::size_of::<T>() == 0 || slice.len() == 0 {
None
} else {
// We have an allocated chunk of memory, so we can bypass runtime
// checks to get our current layout.
unsafe {
let layout = Layout::array::<T>(slice.len()).unwrap_unchecked();
Some((NonNull::new_unchecked(slice.as_mut_ptr().cast()), layout))
}
}
}

// This function is outside `RawVec` to minimize compile times. See the comment
// above `RawVec::grow_amortized` for details. (The `A` parameter isn't
// significant, because the number of different `A` types seen in practice is
// much smaller than the number of `T` types.)
#[inline(never)]
fn finish_grow<A>(
new_layout: Result<Layout, LayoutError>,
current_memory: Option<(NonNull<u8>, Layout)>,
alloc: &A,
) -> Result<NonNull<[u8]>, TryReserveError>
where
A: Allocator,
{
// Check for the error here to minimize the size of `RawVec::grow_*`.
let new_layout = new_layout.map_err(|_| CapacityOverflow)?;

alloc_guard(new_layout.size())?;

let memory = if let Some((ptr, old_layout)) = current_memory {
debug_assert_eq!(old_layout.align(), new_layout.align());
unsafe {
// The allocator checks for alignment equality
intrinsics::assume(old_layout.align() == new_layout.align());
alloc.grow(ptr, old_layout, new_layout)
}
} else {
alloc.allocate(new_layout)
};

memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
}

// Central function for reserve error handling.
#[cfg(not(no_global_oom_handling))]
#[inline]
fn handle_reserve(result: Result<(), TryReserveError>) {
match result.map_err(|e| e.kind()) {
Err(CapacityOverflow) => capacity_overflow(),
Err(AllocError { layout, .. }) => handle_alloc_error(layout),
Ok(()) => { /* yay */ }
}
}

// We need to guarantee the following:
// * We don't ever allocate `> isize::MAX` byte-size objects.
// * We don't overflow `usize::MAX` and actually allocate too little.
//
// On 64-bit we just need to check for overflow since trying to allocate
// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
// an extra guard for this in case we're running on a platform which can use
// all 4GB in user-space, e.g., PAE or x32.

#[inline]
pub(crate) fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
if usize::BITS < 64 && alloc_size > isize::MAX as usize {
Err(CapacityOverflow.into())
} else {
Ok(())
}
}

// One central function responsible for reporting capacity overflows. This'll
// ensure that the code generation related to these panics is minimal as there's
// only one location which panics rather than a bunch throughout the module.
#[cfg(not(no_global_oom_handling))]
pub(crate) fn capacity_overflow() -> ! {
panic!("capacity overflow");
}

#[cfg(not(no_global_oom_handling))]
pub(crate) fn allocate_in<T, A: Allocator>(
capacity: usize,
init: AllocInit,
alloc: A,
) -> Box<[mem::MaybeUninit<T>], A> {
// Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
if capacity == 0 {
Box::empty_in(alloc)
} else if mem::size_of::<T>() == 0 {
unsafe {
storage_from_raw_parts_in(core::ptr::Unique::dangling().as_ptr(), capacity, alloc)
}
} else {
// We avoid `unwrap_or_else` here because it bloats the amount of
// LLVM IR generated.
let layout = match Layout::array::<T>(capacity) {
Ok(layout) => layout,
Err(_) => capacity_overflow(),
};
match alloc_guard(layout.size()) {
Ok(_) => {}
Err(_) => capacity_overflow(),
}
let result = match init {
AllocInit::Uninitialized => alloc.allocate(layout),
AllocInit::Zeroed => alloc.allocate_zeroed(layout),
};
let ptr = match result {
Ok(ptr) => ptr,
Err(_) => handle_alloc_error(layout),
};

// Allocators currently return a `NonNull<[u8]>` whose length
// matches the size requested. If that ever changes, the capacity
// here should change to `ptr.len() / mem::size_of::<T>()`.
unsafe { storage_from_raw_parts_in(ptr.as_ptr().cast(), capacity, alloc) }
}
}
Loading

0 comments on commit 2efcdf8

Please sign in to comment.