Skip to content

Commit 5171cc7

Browse files
committedOct 25, 2020
Auto merge of #77476 - tgnottingham:buffered_siphasher128, r=nnethercote
perf: buffer SipHasher128 This is an attempt to improve Siphasher128 performance by buffering input. Although it reduces instruction count, I'm not confident the effect on wall times, or lack-thereof, is worth the change. --- Additional notes not reflected in source comments: * Implementation choices were guided by a combination of results from rustc-perf and micro-benchmarks, mostly the former. * ~~I tried a couple of different struct layouts that might be more cache friendly with no obvious effect.~~ Update: a particular struct layout was chosen, but it's not critical to performance. See comments in source and discussion below. * I suspect that buffering would be important to a SIMD-accelerated algorithm, but from what I've read and my own tests, SipHash does not seem very amenable to SIMD acceleration, at least by SSE.
2 parents 3e0dd24 + a602d15 commit 5171cc7

File tree

3 files changed

+389
-196
lines changed

3 files changed

+389
-196
lines changed
 

‎compiler/rustc_data_structures/src/lib.rs

+1
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,7 @@
2828
#![feature(const_panic)]
2929
#![feature(min_const_generics)]
3030
#![feature(once_cell)]
31+
#![feature(maybe_uninit_uninit_array)]
3132
#![allow(rustc::default_hash_types)]
3233

3334
#[macro_use]

‎compiler/rustc_data_structures/src/sip128.rs

+343-196
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,53 @@
11
//! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes.
22
3-
use std::cmp;
43
use std::hash::Hasher;
5-
use std::mem;
4+
use std::mem::{self, MaybeUninit};
65
use std::ptr;
76

87
#[cfg(test)]
98
mod tests;
109

10+
// The SipHash algorithm operates on 8-byte chunks.
11+
const ELEM_SIZE: usize = mem::size_of::<u64>();
12+
13+
// Size of the buffer in number of elements, not including the spill.
14+
//
15+
// The selection of this size was guided by rustc-perf benchmark comparisons of
16+
// different buffer sizes. It should be periodically reevaluated as the compiler
17+
// implementation and input characteristics change.
18+
//
19+
// Using the same-sized buffer for everything we hash is a performance versus
20+
// complexity tradeoff. The ideal buffer size, and whether buffering should even
21+
// be used, depends on what is being hashed. It may be worth it to size the
22+
// buffer appropriately (perhaps by making SipHasher128 generic over the buffer
23+
// size) or disable buffering depending on what is being hashed. But at this
24+
// time, we use the same buffer size for everything.
25+
const BUFFER_CAPACITY: usize = 8;
26+
27+
// Size of the buffer in bytes, not including the spill.
28+
const BUFFER_SIZE: usize = BUFFER_CAPACITY * ELEM_SIZE;
29+
30+
// Size of the buffer in number of elements, including the spill.
31+
const BUFFER_WITH_SPILL_CAPACITY: usize = BUFFER_CAPACITY + 1;
32+
33+
// Size of the buffer in bytes, including the spill.
34+
const BUFFER_WITH_SPILL_SIZE: usize = BUFFER_WITH_SPILL_CAPACITY * ELEM_SIZE;
35+
36+
// Index of the spill element in the buffer.
37+
const BUFFER_SPILL_INDEX: usize = BUFFER_WITH_SPILL_CAPACITY - 1;
38+
1139
#[derive(Debug, Clone)]
40+
#[repr(C)]
1241
pub struct SipHasher128 {
13-
k0: u64,
14-
k1: u64,
15-
length: usize, // how many bytes we've processed
16-
state: State, // hash State
17-
tail: u64, // unprocessed bytes le
18-
ntail: usize, // how many bytes in tail are valid
42+
// The access pattern during hashing consists of accesses to `nbuf` and
43+
// `buf` until the buffer is full, followed by accesses to `state` and
44+
// `processed`, and then repetition of that pattern until hashing is done.
45+
// This is the basis for the ordering of fields below. However, in practice
46+
// the cache miss-rate for data access is extremely low regardless of order.
47+
nbuf: usize, // how many bytes in buf are valid
48+
buf: [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY], // unprocessed bytes le
49+
state: State, // hash State
50+
processed: usize, // how many bytes we've processed
1951
}
2052

2153
#[derive(Debug, Clone, Copy)]
@@ -51,271 +83,386 @@ macro_rules! compress {
5183
}};
5284
}
5385

54-
/// Loads an integer of the desired type from a byte stream, in LE order. Uses
55-
/// `copy_nonoverlapping` to let the compiler generate the most efficient way
56-
/// to load it from a possibly unaligned address.
57-
///
58-
/// Unsafe because: unchecked indexing at i..i+size_of(int_ty)
59-
macro_rules! load_int_le {
60-
($buf:expr, $i:expr, $int_ty:ident) => {{
61-
debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len());
62-
let mut data = 0 as $int_ty;
63-
ptr::copy_nonoverlapping(
64-
$buf.get_unchecked($i),
65-
&mut data as *mut _ as *mut u8,
66-
mem::size_of::<$int_ty>(),
67-
);
68-
data.to_le()
69-
}};
70-
}
71-
72-
/// Loads a u64 using up to 7 bytes of a byte slice. It looks clumsy but the
73-
/// `copy_nonoverlapping` calls that occur (via `load_int_le!`) all have fixed
74-
/// sizes and avoid calling `memcpy`, which is good for speed.
75-
///
76-
/// Unsafe because: unchecked indexing at start..start+len
86+
// Copies up to 8 bytes from source to destination. This performs better than
87+
// `ptr::copy_nonoverlapping` on microbenchmarks and may perform better on real
88+
// workloads since all of the copies have fixed sizes and avoid calling memcpy.
89+
//
90+
// This is specifically designed for copies of up to 8 bytes, because that's the
91+
// maximum of number bytes needed to fill an 8-byte-sized element on which
92+
// SipHash operates. Note that for variable-sized copies which are known to be
93+
// less than 8 bytes, this function will perform more work than necessary unless
94+
// the compiler is able to optimize the extra work away.
7795
#[inline]
78-
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
79-
debug_assert!(len < 8);
80-
let mut i = 0; // current byte index (from LSB) in the output u64
81-
let mut out = 0;
82-
if i + 3 < len {
83-
out = load_int_le!(buf, start + i, u32) as u64;
96+
unsafe fn copy_nonoverlapping_small(src: *const u8, dst: *mut u8, count: usize) {
97+
debug_assert!(count <= 8);
98+
99+
if count == 8 {
100+
ptr::copy_nonoverlapping(src, dst, 8);
101+
return;
102+
}
103+
104+
let mut i = 0;
105+
if i + 3 < count {
106+
ptr::copy_nonoverlapping(src.add(i), dst.add(i), 4);
84107
i += 4;
85108
}
86-
if i + 1 < len {
87-
out |= (load_int_le!(buf, start + i, u16) as u64) << (i * 8);
109+
110+
if i + 1 < count {
111+
ptr::copy_nonoverlapping(src.add(i), dst.add(i), 2);
88112
i += 2
89113
}
90-
if i < len {
91-
out |= (*buf.get_unchecked(start + i) as u64) << (i * 8);
114+
115+
if i < count {
116+
*dst.add(i) = *src.add(i);
92117
i += 1;
93118
}
94-
debug_assert_eq!(i, len);
95-
out
119+
120+
debug_assert_eq!(i, count);
96121
}
97122

123+
// # Implementation
124+
//
125+
// This implementation uses buffering to reduce the hashing cost for inputs
126+
// consisting of many small integers. Buffering simplifies the integration of
127+
// integer input--the integer write function typically just appends to the
128+
// buffer with a statically sized write, updates metadata, and returns.
129+
//
130+
// Buffering also prevents alternating between writes that do and do not trigger
131+
// the hashing process. Only when the entire buffer is full do we transition
132+
// into hashing. This allows us to keep the hash state in registers for longer,
133+
// instead of loading and storing it before and after processing each element.
134+
//
135+
// When a write fills the buffer, a buffer processing function is invoked to
136+
// hash all of the buffered input. The buffer processing functions are marked
137+
// `#[inline(never)]` so that they aren't inlined into the append functions,
138+
// which ensures the more frequently called append functions remain inlineable
139+
// and don't include register pushing/popping that would only be made necessary
140+
// by inclusion of the complex buffer processing path which uses those
141+
// registers.
142+
//
143+
// The buffer includes a "spill"--an extra element at the end--which simplifies
144+
// the integer write buffer processing path. The value that fills the buffer can
145+
// be written with a statically sized write that may spill over into the spill.
146+
// After the buffer is processed, the part of the value that spilled over can be
147+
// written from the spill to the beginning of the buffer with another statically
148+
// sized write. This write may copy more bytes than actually spilled over, but
149+
// we maintain the metadata such that any extra copied bytes will be ignored by
150+
// subsequent processing. Due to the static sizes, this scheme performs better
151+
// than copying the exact number of bytes needed into the end and beginning of
152+
// the buffer.
153+
//
154+
// The buffer is uninitialized, which improves performance, but may preclude
155+
// efficient implementation of alternative approaches. The improvement is not so
156+
// large that an alternative approach should be disregarded because it cannot be
157+
// efficiently implemented with an uninitialized buffer. On the other hand, an
158+
// uninitialized buffer may become more important should a larger one be used.
159+
//
160+
// # Platform Dependence
161+
//
162+
// The SipHash algorithm operates on byte sequences. It parses the input stream
163+
// as 8-byte little-endian integers. Therefore, given the same byte sequence, it
164+
// produces the same result on big- and little-endian hardware.
165+
//
166+
// However, the Hasher trait has methods which operate on multi-byte integers.
167+
// How they are converted into byte sequences can be endian-dependent (by using
168+
// native byte order) or independent (by consistently using either LE or BE byte
169+
// order). It can also be `isize` and `usize` size dependent (by using the
170+
// native size), or independent (by converting to a common size), supposing the
171+
// values can be represented in 32 bits.
172+
//
173+
// In order to make `SipHasher128` consistent with `SipHasher` in libstd, we
174+
// choose to do the integer to byte sequence conversion in the platform-
175+
// dependent way. Clients can achieve platform-independent hashing by widening
176+
// `isize` and `usize` integers to 64 bits on 32-bit systems and byte-swapping
177+
// integers on big-endian systems before passing them to the writing functions.
178+
// This causes the input byte sequence to look identical on big- and little-
179+
// endian systems (supposing `isize` and `usize` values can be represented in 32
180+
// bits), which ensures platform-independent results.
98181
impl SipHasher128 {
99182
#[inline]
100183
pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 {
101-
let mut state = SipHasher128 {
102-
k0: key0,
103-
k1: key1,
104-
length: 0,
105-
state: State { v0: 0, v1: 0, v2: 0, v3: 0 },
106-
tail: 0,
107-
ntail: 0,
184+
let mut hasher = SipHasher128 {
185+
nbuf: 0,
186+
buf: MaybeUninit::uninit_array(),
187+
state: State {
188+
v0: key0 ^ 0x736f6d6570736575,
189+
// The XOR with 0xee is only done on 128-bit algorithm version.
190+
v1: key1 ^ (0x646f72616e646f6d ^ 0xee),
191+
v2: key0 ^ 0x6c7967656e657261,
192+
v3: key1 ^ 0x7465646279746573,
193+
},
194+
processed: 0,
108195
};
109-
state.reset();
110-
state
196+
197+
unsafe {
198+
// Initialize spill because we read from it in `short_write_process_buffer`.
199+
*hasher.buf.get_unchecked_mut(BUFFER_SPILL_INDEX) = MaybeUninit::zeroed();
200+
}
201+
202+
hasher
111203
}
112204

205+
// A specialized write function for values with size <= 8.
113206
#[inline]
114-
fn reset(&mut self) {
115-
self.length = 0;
116-
self.state.v0 = self.k0 ^ 0x736f6d6570736575;
117-
self.state.v1 = self.k1 ^ 0x646f72616e646f6d;
118-
self.state.v2 = self.k0 ^ 0x6c7967656e657261;
119-
self.state.v3 = self.k1 ^ 0x7465646279746573;
120-
self.ntail = 0;
121-
122-
// This is only done in the 128 bit version:
123-
self.state.v1 ^= 0xee;
207+
fn short_write<T>(&mut self, x: T) {
208+
let size = mem::size_of::<T>();
209+
let nbuf = self.nbuf;
210+
debug_assert!(size <= 8);
211+
debug_assert!(nbuf < BUFFER_SIZE);
212+
debug_assert!(nbuf + size < BUFFER_WITH_SPILL_SIZE);
213+
214+
if nbuf + size < BUFFER_SIZE {
215+
unsafe {
216+
// The memcpy call is optimized away because the size is known.
217+
let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
218+
ptr::copy_nonoverlapping(&x as *const _ as *const u8, dst, size);
219+
}
220+
221+
self.nbuf = nbuf + size;
222+
223+
return;
224+
}
225+
226+
unsafe { self.short_write_process_buffer(x) }
124227
}
125228

126-
// A specialized write function for values with size <= 8.
127-
//
128-
// The input must be zero-extended to 64-bits by the caller. This extension
129-
// isn't hashed, but the implementation requires it for correctness.
229+
// A specialized write function for values with size <= 8 that should only
230+
// be called when the write would cause the buffer to fill.
130231
//
131-
// This function, given the same integer size and value, has the same effect
132-
// on both little- and big-endian hardware. It operates on values without
133-
// depending on their sequence in memory, so is independent of endianness.
134-
//
135-
// However, we want SipHasher128 to be platform-dependent, in order to be
136-
// consistent with the platform-dependent SipHasher in libstd. In other
137-
// words, we want:
138-
//
139-
// - little-endian: `write_u32(0xDDCCBBAA)` == `write([0xAA, 0xBB, 0xCC, 0xDD])`
140-
// - big-endian: `write_u32(0xDDCCBBAA)` == `write([0xDD, 0xCC, 0xBB, 0xAA])`
141-
//
142-
// Therefore, in order to produce endian-dependent results, SipHasher128's
143-
// `write_xxx` Hasher trait methods byte-swap `x` prior to zero-extending.
144-
//
145-
// If clients of SipHasher128 itself want platform-independent results, they
146-
// *also* must byte-swap integer inputs before invoking the `write_xxx`
147-
// methods on big-endian hardware (that is, two byte-swaps must occur--one
148-
// in the client, and one in SipHasher128). Additionally, they must extend
149-
// `usize` and `isize` types to 64 bits on 32-bit systems.
150-
#[inline]
151-
fn short_write<T>(&mut self, _x: T, x: u64) {
232+
// SAFETY: the write of `x` into `self.buf` starting at byte offset
233+
// `self.nbuf` must cause `self.buf` to become fully initialized (and not
234+
// overflow) if it wasn't already.
235+
#[inline(never)]
236+
unsafe fn short_write_process_buffer<T>(&mut self, x: T) {
152237
let size = mem::size_of::<T>();
153-
self.length += size;
154-
155-
// The original number must be zero-extended, not sign-extended.
156-
debug_assert!(if size < 8 { x >> (8 * size) == 0 } else { true });
157-
158-
// The number of bytes needed to fill `self.tail`.
159-
let needed = 8 - self.ntail;
160-
161-
// SipHash parses the input stream as 8-byte little-endian integers.
162-
// Inputs are put into `self.tail` until 8 bytes of data have been
163-
// collected, and then that word is processed.
164-
//
165-
// For example, imagine that `self.tail` is 0x0000_00EE_DDCC_BBAA,
166-
// `self.ntail` is 5 (because 5 bytes have been put into `self.tail`),
167-
// and `needed` is therefore 3.
168-
//
169-
// - Scenario 1, `self.write_u8(0xFF)`: we have already zero-extended
170-
// the input to 0x0000_0000_0000_00FF. We now left-shift it five
171-
// bytes, giving 0x0000_FF00_0000_0000. We then bitwise-OR that value
172-
// into `self.tail`, resulting in 0x0000_FFEE_DDCC_BBAA.
173-
// (Zero-extension of the original input is critical in this scenario
174-
// because we don't want the high two bytes of `self.tail` to be
175-
// touched by the bitwise-OR.) `self.tail` is not yet full, so we
176-
// return early, after updating `self.ntail` to 6.
177-
//
178-
// - Scenario 2, `self.write_u32(0xIIHH_GGFF)`: we have already
179-
// zero-extended the input to 0x0000_0000_IIHH_GGFF. We now
180-
// left-shift it five bytes, giving 0xHHGG_FF00_0000_0000. We then
181-
// bitwise-OR that value into `self.tail`, resulting in
182-
// 0xHHGG_FFEE_DDCC_BBAA. `self.tail` is now full, and we can use it
183-
// to update `self.state`. (As mentioned above, this assumes a
184-
// little-endian machine; on a big-endian machine we would have
185-
// byte-swapped 0xIIHH_GGFF in the caller, giving 0xFFGG_HHII, and we
186-
// would then end up bitwise-ORing 0xGGHH_II00_0000_0000 into
187-
// `self.tail`).
188-
//
189-
self.tail |= x << (8 * self.ntail);
190-
if size < needed {
191-
self.ntail += size;
238+
let nbuf = self.nbuf;
239+
debug_assert!(size <= 8);
240+
debug_assert!(nbuf < BUFFER_SIZE);
241+
debug_assert!(nbuf + size >= BUFFER_SIZE);
242+
debug_assert!(nbuf + size < BUFFER_WITH_SPILL_SIZE);
243+
244+
// Copy first part of input into end of buffer, possibly into spill
245+
// element. The memcpy call is optimized away because the size is known.
246+
let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
247+
ptr::copy_nonoverlapping(&x as *const _ as *const u8, dst, size);
248+
249+
// Process buffer.
250+
for i in 0..BUFFER_CAPACITY {
251+
let elem = self.buf.get_unchecked(i).assume_init().to_le();
252+
self.state.v3 ^= elem;
253+
Sip24Rounds::c_rounds(&mut self.state);
254+
self.state.v0 ^= elem;
255+
}
256+
257+
// Copy remaining input into start of buffer by copying size - 1
258+
// elements from spill (at most size - 1 bytes could have overflowed
259+
// into the spill). The memcpy call is optimized away because the size
260+
// is known. And the whole copy is optimized away for size == 1.
261+
let src = self.buf.get_unchecked(BUFFER_SPILL_INDEX) as *const _ as *const u8;
262+
ptr::copy_nonoverlapping(src, self.buf.as_mut_ptr() as *mut u8, size - 1);
263+
264+
// This function should only be called when the write fills the buffer.
265+
// Therefore, when size == 1, the new `self.nbuf` must be zero. The size
266+
// is statically known, so the branch is optimized away.
267+
self.nbuf = if size == 1 { 0 } else { nbuf + size - BUFFER_SIZE };
268+
self.processed += BUFFER_SIZE;
269+
}
270+
271+
// A write function for byte slices.
272+
#[inline]
273+
fn slice_write(&mut self, msg: &[u8]) {
274+
let length = msg.len();
275+
let nbuf = self.nbuf;
276+
debug_assert!(nbuf < BUFFER_SIZE);
277+
278+
if nbuf + length < BUFFER_SIZE {
279+
unsafe {
280+
let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
281+
282+
if length <= 8 {
283+
copy_nonoverlapping_small(msg.as_ptr(), dst, length);
284+
} else {
285+
// This memcpy is *not* optimized away.
286+
ptr::copy_nonoverlapping(msg.as_ptr(), dst, length);
287+
}
288+
}
289+
290+
self.nbuf = nbuf + length;
291+
192292
return;
193293
}
194294

195-
// `self.tail` is full, process it.
196-
self.state.v3 ^= self.tail;
197-
Sip24Rounds::c_rounds(&mut self.state);
198-
self.state.v0 ^= self.tail;
199-
200-
// Continuing scenario 2: we have one byte left over from the input. We
201-
// set `self.ntail` to 1 and `self.tail` to `0x0000_0000_IIHH_GGFF >>
202-
// 8*3`, which is 0x0000_0000_0000_00II. (Or on a big-endian machine
203-
// the prior byte-swapping would leave us with 0x0000_0000_0000_00FF.)
204-
//
205-
// The `if` is needed to avoid shifting by 64 bits, which Rust
206-
// complains about.
207-
self.ntail = size - needed;
208-
self.tail = if needed < 8 { x >> (8 * needed) } else { 0 };
295+
unsafe { self.slice_write_process_buffer(msg) }
296+
}
297+
298+
// A write function for byte slices that should only be called when the
299+
// write would cause the buffer to fill.
300+
//
301+
// SAFETY: `self.buf` must be initialized up to the byte offset `self.nbuf`,
302+
// and `msg` must contain enough bytes to initialize the rest of the element
303+
// containing the byte offset `self.nbuf`.
304+
#[inline(never)]
305+
unsafe fn slice_write_process_buffer(&mut self, msg: &[u8]) {
306+
let length = msg.len();
307+
let nbuf = self.nbuf;
308+
debug_assert!(nbuf < BUFFER_SIZE);
309+
debug_assert!(nbuf + length >= BUFFER_SIZE);
310+
311+
// Always copy first part of input into current element of buffer.
312+
// This function should only be called when the write fills the buffer,
313+
// so we know that there is enough input to fill the current element.
314+
let valid_in_elem = nbuf % ELEM_SIZE;
315+
let needed_in_elem = ELEM_SIZE - valid_in_elem;
316+
317+
let src = msg.as_ptr();
318+
let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
319+
copy_nonoverlapping_small(src, dst, needed_in_elem);
320+
321+
// Process buffer.
322+
323+
// Using `nbuf / ELEM_SIZE + 1` rather than `(nbuf + needed_in_elem) /
324+
// ELEM_SIZE` to show the compiler that this loop's upper bound is > 0.
325+
// We know that is true, because last step ensured we have a full
326+
// element in the buffer.
327+
let last = nbuf / ELEM_SIZE + 1;
328+
329+
for i in 0..last {
330+
let elem = self.buf.get_unchecked(i).assume_init().to_le();
331+
self.state.v3 ^= elem;
332+
Sip24Rounds::c_rounds(&mut self.state);
333+
self.state.v0 ^= elem;
334+
}
335+
336+
// Process the remaining element-sized chunks of input.
337+
let mut processed = needed_in_elem;
338+
let input_left = length - processed;
339+
let elems_left = input_left / ELEM_SIZE;
340+
let extra_bytes_left = input_left % ELEM_SIZE;
341+
342+
for _ in 0..elems_left {
343+
let elem = (msg.as_ptr().add(processed) as *const u64).read_unaligned().to_le();
344+
self.state.v3 ^= elem;
345+
Sip24Rounds::c_rounds(&mut self.state);
346+
self.state.v0 ^= elem;
347+
processed += ELEM_SIZE;
348+
}
349+
350+
// Copy remaining input into start of buffer.
351+
let src = msg.as_ptr().add(processed);
352+
let dst = self.buf.as_mut_ptr() as *mut u8;
353+
copy_nonoverlapping_small(src, dst, extra_bytes_left);
354+
355+
self.nbuf = extra_bytes_left;
356+
self.processed += nbuf + processed;
209357
}
210358

211359
#[inline]
212360
pub fn finish128(mut self) -> (u64, u64) {
213-
let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail;
361+
debug_assert!(self.nbuf < BUFFER_SIZE);
214362

215-
self.state.v3 ^= b;
216-
Sip24Rounds::c_rounds(&mut self.state);
217-
self.state.v0 ^= b;
363+
// Process full elements in buffer.
364+
let last = self.nbuf / ELEM_SIZE;
218365

219-
self.state.v2 ^= 0xee;
220-
Sip24Rounds::d_rounds(&mut self.state);
221-
let _0 = self.state.v0 ^ self.state.v1 ^ self.state.v2 ^ self.state.v3;
366+
// Since we're consuming self, avoid updating members for a potential
367+
// performance gain.
368+
let mut state = self.state;
369+
370+
for i in 0..last {
371+
let elem = unsafe { self.buf.get_unchecked(i).assume_init().to_le() };
372+
state.v3 ^= elem;
373+
Sip24Rounds::c_rounds(&mut state);
374+
state.v0 ^= elem;
375+
}
376+
377+
// Get remaining partial element.
378+
let elem = if self.nbuf % ELEM_SIZE != 0 {
379+
unsafe {
380+
// Ensure element is initialized by writing zero bytes. At most
381+
// `ELEM_SIZE - 1` are required given the above check. It's safe
382+
// to write this many because we have the spill and we maintain
383+
// `self.nbuf` such that this write will start before the spill.
384+
let dst = (self.buf.as_mut_ptr() as *mut u8).add(self.nbuf);
385+
ptr::write_bytes(dst, 0, ELEM_SIZE - 1);
386+
self.buf.get_unchecked(last).assume_init().to_le()
387+
}
388+
} else {
389+
0
390+
};
391+
392+
// Finalize the hash.
393+
let length = self.processed + self.nbuf;
394+
let b: u64 = ((length as u64 & 0xff) << 56) | elem;
395+
396+
state.v3 ^= b;
397+
Sip24Rounds::c_rounds(&mut state);
398+
state.v0 ^= b;
399+
400+
state.v2 ^= 0xee;
401+
Sip24Rounds::d_rounds(&mut state);
402+
let _0 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
403+
404+
state.v1 ^= 0xdd;
405+
Sip24Rounds::d_rounds(&mut state);
406+
let _1 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
222407

223-
self.state.v1 ^= 0xdd;
224-
Sip24Rounds::d_rounds(&mut self.state);
225-
let _1 = self.state.v0 ^ self.state.v1 ^ self.state.v2 ^ self.state.v3;
226408
(_0, _1)
227409
}
228410
}
229411

230412
impl Hasher for SipHasher128 {
231413
#[inline]
232414
fn write_u8(&mut self, i: u8) {
233-
self.short_write(i, i as u64);
415+
self.short_write(i);
234416
}
235417

236418
#[inline]
237419
fn write_u16(&mut self, i: u16) {
238-
self.short_write(i, i.to_le() as u64);
420+
self.short_write(i);
239421
}
240422

241423
#[inline]
242424
fn write_u32(&mut self, i: u32) {
243-
self.short_write(i, i.to_le() as u64);
425+
self.short_write(i);
244426
}
245427

246428
#[inline]
247429
fn write_u64(&mut self, i: u64) {
248-
self.short_write(i, i.to_le() as u64);
430+
self.short_write(i);
249431
}
250432

251433
#[inline]
252434
fn write_usize(&mut self, i: usize) {
253-
self.short_write(i, i.to_le() as u64);
435+
self.short_write(i);
254436
}
255437

256438
#[inline]
257439
fn write_i8(&mut self, i: i8) {
258-
self.short_write(i, i as u8 as u64);
440+
self.short_write(i as u8);
259441
}
260442

261443
#[inline]
262444
fn write_i16(&mut self, i: i16) {
263-
self.short_write(i, (i as u16).to_le() as u64);
445+
self.short_write(i as u16);
264446
}
265447

266448
#[inline]
267449
fn write_i32(&mut self, i: i32) {
268-
self.short_write(i, (i as u32).to_le() as u64);
450+
self.short_write(i as u32);
269451
}
270452

271453
#[inline]
272454
fn write_i64(&mut self, i: i64) {
273-
self.short_write(i, (i as u64).to_le() as u64);
455+
self.short_write(i as u64);
274456
}
275457

276458
#[inline]
277459
fn write_isize(&mut self, i: isize) {
278-
self.short_write(i, (i as usize).to_le() as u64);
460+
self.short_write(i as usize);
279461
}
280462

281463
#[inline]
282464
fn write(&mut self, msg: &[u8]) {
283-
let length = msg.len();
284-
self.length += length;
285-
286-
let mut needed = 0;
287-
288-
if self.ntail != 0 {
289-
needed = 8 - self.ntail;
290-
self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
291-
if length < needed {
292-
self.ntail += length;
293-
return;
294-
} else {
295-
self.state.v3 ^= self.tail;
296-
Sip24Rounds::c_rounds(&mut self.state);
297-
self.state.v0 ^= self.tail;
298-
self.ntail = 0;
299-
}
300-
}
301-
302-
// Buffered tail is now flushed, process new input.
303-
let len = length - needed;
304-
let left = len & 0x7;
305-
306-
let mut i = needed;
307-
while i < len - left {
308-
let mi = unsafe { load_int_le!(msg, i, u64) };
309-
310-
self.state.v3 ^= mi;
311-
Sip24Rounds::c_rounds(&mut self.state);
312-
self.state.v0 ^= mi;
313-
314-
i += 8;
315-
}
316-
317-
self.tail = unsafe { u8to64_le(msg, i, left) };
318-
self.ntail = left;
465+
self.slice_write(msg);
319466
}
320467

321468
fn finish(&self) -> u64 {

‎compiler/rustc_data_structures/src/sip128/tests.rs

+45
Original file line numberDiff line numberDiff line change
@@ -450,3 +450,48 @@ fn test_short_write_works() {
450450

451451
assert_eq!(h1_hash, h2_hash);
452452
}
453+
454+
macro_rules! test_fill_buffer {
455+
($type:ty, $write_method:ident) => {{
456+
// Test filling and overfilling the buffer from all possible offsets
457+
// for a given integer type and its corresponding write method.
458+
const SIZE: usize = std::mem::size_of::<$type>();
459+
let input = [42; BUFFER_SIZE];
460+
let x = 0x01234567_89ABCDEF_76543210_FEDCBA98_u128 as $type;
461+
let x_bytes = &x.to_ne_bytes();
462+
463+
for i in 1..=SIZE {
464+
let s = &input[..BUFFER_SIZE - i];
465+
466+
let mut h1 = SipHasher128::new_with_keys(7, 13);
467+
h1.write(s);
468+
h1.$write_method(x);
469+
470+
let mut h2 = SipHasher128::new_with_keys(7, 13);
471+
h2.write(s);
472+
h2.write(x_bytes);
473+
474+
let h1_hash = h1.finish128();
475+
let h2_hash = h2.finish128();
476+
477+
assert_eq!(h1_hash, h2_hash);
478+
}
479+
}};
480+
}
481+
482+
#[test]
483+
fn test_fill_buffer() {
484+
test_fill_buffer!(u8, write_u8);
485+
test_fill_buffer!(u16, write_u16);
486+
test_fill_buffer!(u32, write_u32);
487+
test_fill_buffer!(u64, write_u64);
488+
test_fill_buffer!(u128, write_u128);
489+
test_fill_buffer!(usize, write_usize);
490+
491+
test_fill_buffer!(i8, write_i8);
492+
test_fill_buffer!(i16, write_i16);
493+
test_fill_buffer!(i32, write_i32);
494+
test_fill_buffer!(i64, write_i64);
495+
test_fill_buffer!(i128, write_i128);
496+
test_fill_buffer!(isize, write_isize);
497+
}

0 commit comments

Comments
 (0)
Please sign in to comment.