|
| 1 | +use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind}; |
| 2 | +use rustc_middle::ty::{self, Ty}; |
| 3 | +use rustc_span::{self, Span}; |
| 4 | + |
| 5 | +use super::Expectation::*; |
| 6 | +use super::FnCtxt; |
| 7 | + |
| 8 | +/// When type-checking an expression, we propagate downward |
| 9 | +/// whatever type hint we are able in the form of an `Expectation`. |
| 10 | +#[derive(Copy, Clone, Debug)] |
| 11 | +pub enum Expectation<'tcx> { |
| 12 | + /// We know nothing about what type this expression should have. |
| 13 | + NoExpectation, |
| 14 | + |
| 15 | + /// This expression should have the type given (or some subtype). |
| 16 | + ExpectHasType(Ty<'tcx>), |
| 17 | + |
| 18 | + /// This expression will be cast to the `Ty`. |
| 19 | + ExpectCastableToType(Ty<'tcx>), |
| 20 | + |
| 21 | + /// This rvalue expression will be wrapped in `&` or `Box` and coerced |
| 22 | + /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`. |
| 23 | + ExpectRvalueLikeUnsized(Ty<'tcx>), |
| 24 | +} |
| 25 | + |
| 26 | +impl<'a, 'tcx> Expectation<'tcx> { |
| 27 | + // Disregard "castable to" expectations because they |
| 28 | + // can lead us astray. Consider for example `if cond |
| 29 | + // {22} else {c} as u8` -- if we propagate the |
| 30 | + // "castable to u8" constraint to 22, it will pick the |
| 31 | + // type 22u8, which is overly constrained (c might not |
| 32 | + // be a u8). In effect, the problem is that the |
| 33 | + // "castable to" expectation is not the tightest thing |
| 34 | + // we can say, so we want to drop it in this case. |
| 35 | + // The tightest thing we can say is "must unify with |
| 36 | + // else branch". Note that in the case of a "has type" |
| 37 | + // constraint, this limitation does not hold. |
| 38 | + |
| 39 | + // If the expected type is just a type variable, then don't use |
| 40 | + // an expected type. Otherwise, we might write parts of the type |
| 41 | + // when checking the 'then' block which are incompatible with the |
| 42 | + // 'else' branch. |
| 43 | + pub(super) fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'tcx>) -> Expectation<'tcx> { |
| 44 | + match *self { |
| 45 | + ExpectHasType(ety) => { |
| 46 | + let ety = fcx.shallow_resolve(ety); |
| 47 | + if !ety.is_ty_var() { ExpectHasType(ety) } else { NoExpectation } |
| 48 | + } |
| 49 | + ExpectRvalueLikeUnsized(ety) => ExpectRvalueLikeUnsized(ety), |
| 50 | + _ => NoExpectation, |
| 51 | + } |
| 52 | + } |
| 53 | + |
| 54 | + /// Provides an expectation for an rvalue expression given an *optional* |
| 55 | + /// hint, which is not required for type safety (the resulting type might |
| 56 | + /// be checked higher up, as is the case with `&expr` and `box expr`), but |
| 57 | + /// is useful in determining the concrete type. |
| 58 | + /// |
| 59 | + /// The primary use case is where the expected type is a fat pointer, |
| 60 | + /// like `&[isize]`. For example, consider the following statement: |
| 61 | + /// |
| 62 | + /// let x: &[isize] = &[1, 2, 3]; |
| 63 | + /// |
| 64 | + /// In this case, the expected type for the `&[1, 2, 3]` expression is |
| 65 | + /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the |
| 66 | + /// expectation `ExpectHasType([isize])`, that would be too strong -- |
| 67 | + /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`. |
| 68 | + /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced |
| 69 | + /// to the type `&[isize]`. Therefore, we propagate this more limited hint, |
| 70 | + /// which still is useful, because it informs integer literals and the like. |
| 71 | + /// See the test case `test/ui/coerce-expect-unsized.rs` and #20169 |
| 72 | + /// for examples of where this comes up,. |
| 73 | + pub(super) fn rvalue_hint(fcx: &FnCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> { |
| 74 | + match fcx.tcx.struct_tail_without_normalization(ty).kind() { |
| 75 | + ty::Slice(_) | ty::Str | ty::Dynamic(..) => ExpectRvalueLikeUnsized(ty), |
| 76 | + _ => ExpectHasType(ty), |
| 77 | + } |
| 78 | + } |
| 79 | + |
| 80 | + // Resolves `expected` by a single level if it is a variable. If |
| 81 | + // there is no expected type or resolution is not possible (e.g., |
| 82 | + // no constraints yet present), just returns `None`. |
| 83 | + fn resolve(self, fcx: &FnCtxt<'a, 'tcx>) -> Expectation<'tcx> { |
| 84 | + match self { |
| 85 | + NoExpectation => NoExpectation, |
| 86 | + ExpectCastableToType(t) => ExpectCastableToType(fcx.resolve_vars_if_possible(&t)), |
| 87 | + ExpectHasType(t) => ExpectHasType(fcx.resolve_vars_if_possible(&t)), |
| 88 | + ExpectRvalueLikeUnsized(t) => ExpectRvalueLikeUnsized(fcx.resolve_vars_if_possible(&t)), |
| 89 | + } |
| 90 | + } |
| 91 | + |
| 92 | + pub(super) fn to_option(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> { |
| 93 | + match self.resolve(fcx) { |
| 94 | + NoExpectation => None, |
| 95 | + ExpectCastableToType(ty) | ExpectHasType(ty) | ExpectRvalueLikeUnsized(ty) => Some(ty), |
| 96 | + } |
| 97 | + } |
| 98 | + |
| 99 | + /// It sometimes happens that we want to turn an expectation into |
| 100 | + /// a **hard constraint** (i.e., something that must be satisfied |
| 101 | + /// for the program to type-check). `only_has_type` will return |
| 102 | + /// such a constraint, if it exists. |
| 103 | + pub(super) fn only_has_type(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> { |
| 104 | + match self.resolve(fcx) { |
| 105 | + ExpectHasType(ty) => Some(ty), |
| 106 | + NoExpectation | ExpectCastableToType(_) | ExpectRvalueLikeUnsized(_) => None, |
| 107 | + } |
| 108 | + } |
| 109 | + |
| 110 | + /// Like `only_has_type`, but instead of returning `None` if no |
| 111 | + /// hard constraint exists, creates a fresh type variable. |
| 112 | + pub(super) fn coercion_target_type(self, fcx: &FnCtxt<'a, 'tcx>, span: Span) -> Ty<'tcx> { |
| 113 | + self.only_has_type(fcx).unwrap_or_else(|| { |
| 114 | + fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span }) |
| 115 | + }) |
| 116 | + } |
| 117 | +} |
0 commit comments