@@ -9,122 +9,82 @@ use crate::{BytePos, SpanData};
9
9
use crate :: hygiene:: SyntaxContext ;
10
10
11
11
use rustc_data_structures:: fx:: FxHashMap ;
12
- use std:: hash:: { Hash , Hasher } ;
13
12
14
13
/// A compressed span.
15
- /// Contains either fields of `SpanData` inline if they are small, or index into span interner.
16
- /// The primary goal of `Span` is to be as small as possible and fit into other structures
17
- /// (that's why it uses `packed` as well). Decoding speed is the second priority.
18
- /// See `SpanData` for the info on span fields in decoded representation.
19
- #[ repr( packed) ]
20
- pub struct Span ( u32 ) ;
21
-
22
- impl Copy for Span { }
23
- impl Clone for Span {
24
- #[ inline]
25
- fn clone ( & self ) -> Span {
26
- * self
27
- }
28
- }
29
- impl PartialEq for Span {
30
- #[ inline]
31
- fn eq ( & self , other : & Span ) -> bool {
32
- let a = self . 0 ;
33
- let b = other. 0 ;
34
- a == b
35
- }
36
- }
37
- impl Eq for Span { }
38
- impl Hash for Span {
39
- #[ inline]
40
- fn hash < H : Hasher > ( & self , state : & mut H ) {
41
- let a = self . 0 ;
42
- a. hash ( state)
43
- }
14
+ ///
15
+ /// `SpanData` is 12 bytes, which is a bit too big to stick everywhere. `Span`
16
+ /// is a form that only takes up 8 bytes, with less space for the length and
17
+ /// context. The vast majority of `SpanData` instances will fit within those 8
18
+ /// bytes; any `SpanData` whose fields don't fit into a `Span` are stored in a
19
+ /// separate interner table, and the `Span` will index into that table. (An
20
+ /// earlier version of this code used only 4 bytes for `Span`, but that was
21
+ /// slower because the interner was used a lot more.)
22
+ ///
23
+ /// Inline (compressed) format:
24
+ /// - span.base_or_index = span_data.lo
25
+ /// - span.len_or_tag = len = span_data.hi - span_data.lo (must be <= MAX_LEN)
26
+ /// - span.ctxt = span_data.ctxt (must be <= MAX_CTXT)
27
+ ///
28
+ /// Interned format:
29
+ /// - span.base_or_index = index into the interner vector
30
+ /// - span.len_or_tag = LEN_TAG (high bit set, all other bits are zero)
31
+ /// - span.ctxt = 0
32
+ ///
33
+ /// Note: the inline form uses 0 for the tag value (rather than 1) so that we
34
+ /// don't need to mask out the tag bit when getting the length, and so that the
35
+ /// dummy span can be all zeroes.
36
+ #[ derive( Clone , Copy , Eq , PartialEq , Hash ) ]
37
+ pub struct Span {
38
+ base_or_index : u32 ,
39
+ len_or_tag : u16 ,
40
+ ctxt_or_zero : u16
44
41
}
45
42
43
+ const LEN_TAG : u16 = 0b1000_0000_0000_0000 ;
44
+ const MAX_LEN : u32 = 0b0111_1111_1111_1111 ;
45
+ const MAX_CTXT : u32 = 0b1111_1111_1111_1111 ;
46
+
46
47
/// Dummy span, both position and length are zero, syntax context is zero as well.
47
- /// This span is kept inline and encoded with format 0.
48
- pub const DUMMY_SP : Span = Span ( 0 ) ;
48
+ pub const DUMMY_SP : Span = Span { base_or_index : 0 , len_or_tag : 0 , ctxt_or_zero : 0 } ;
49
49
50
50
impl Span {
51
51
#[ inline]
52
- pub fn new ( lo : BytePos , hi : BytePos , ctxt : SyntaxContext ) -> Self {
53
- encode ( & match lo <= hi {
54
- true => SpanData { lo, hi, ctxt } ,
55
- false => SpanData { lo : hi, hi : lo, ctxt } ,
56
- } )
52
+ pub fn new ( mut lo : BytePos , mut hi : BytePos , ctxt : SyntaxContext ) -> Self {
53
+ if lo > hi {
54
+ std:: mem:: swap ( & mut lo, & mut hi) ;
55
+ }
56
+
57
+ let ( base, len, ctxt2) = ( lo. 0 , hi. 0 - lo. 0 , ctxt. as_u32 ( ) ) ;
58
+
59
+ if len <= MAX_LEN && ctxt2 <= MAX_CTXT {
60
+ // Inline format.
61
+ Span { base_or_index : base, len_or_tag : len as u16 , ctxt_or_zero : ctxt2 as u16 }
62
+ } else {
63
+ // Interned format.
64
+ let index = with_span_interner ( |interner| interner. intern ( & SpanData { lo, hi, ctxt } ) ) ;
65
+ Span { base_or_index : index, len_or_tag : LEN_TAG , ctxt_or_zero : 0 }
66
+ }
57
67
}
58
68
59
69
#[ inline]
60
70
pub fn data ( self ) -> SpanData {
61
- decode ( self )
71
+ if self . len_or_tag != LEN_TAG {
72
+ // Inline format.
73
+ debug_assert ! ( self . len_or_tag as u32 <= MAX_LEN ) ;
74
+ SpanData {
75
+ lo : BytePos ( self . base_or_index ) ,
76
+ hi : BytePos ( self . base_or_index + self . len_or_tag as u32 ) ,
77
+ ctxt : SyntaxContext :: from_u32 ( self . ctxt_or_zero as u32 ) ,
78
+ }
79
+ } else {
80
+ // Interned format.
81
+ debug_assert ! ( self . ctxt_or_zero == 0 ) ;
82
+ let index = self . base_or_index ;
83
+ with_span_interner ( |interner| * interner. get ( index) )
84
+ }
62
85
}
63
86
}
64
87
65
- // Tags
66
- const TAG_INLINE : u32 = 0 ;
67
- const TAG_INTERNED : u32 = 1 ;
68
- const TAG_MASK : u32 = 1 ;
69
-
70
- // Fields indexes
71
- const BASE_INDEX : usize = 0 ;
72
- const LEN_INDEX : usize = 1 ;
73
- const CTXT_INDEX : usize = 2 ;
74
-
75
- // Tag = 0, inline format.
76
- // -------------------------------------------------------------
77
- // | base 31:7 | len 6:1 | ctxt (currently 0 bits) | tag 0:0 |
78
- // -------------------------------------------------------------
79
- // Since there are zero bits for ctxt, only SpanData with a 0 SyntaxContext
80
- // can be inline.
81
- const INLINE_SIZES : [ u32 ; 3 ] = [ 25 , 6 , 0 ] ;
82
- const INLINE_OFFSETS : [ u32 ; 3 ] = [ 7 , 1 , 1 ] ;
83
-
84
- // Tag = 1, interned format.
85
- // ------------------------
86
- // | index 31:1 | tag 0:0 |
87
- // ------------------------
88
- const INTERNED_INDEX_SIZE : u32 = 31 ;
89
- const INTERNED_INDEX_OFFSET : u32 = 1 ;
90
-
91
- #[ inline]
92
- fn encode ( sd : & SpanData ) -> Span {
93
- let ( base, len, ctxt) = ( sd. lo . 0 , sd. hi . 0 - sd. lo . 0 , sd. ctxt . as_u32 ( ) ) ;
94
-
95
- let val = if ( base >> INLINE_SIZES [ BASE_INDEX ] ) == 0 &&
96
- ( len >> INLINE_SIZES [ LEN_INDEX ] ) == 0 &&
97
- ( ctxt >> INLINE_SIZES [ CTXT_INDEX ] ) == 0 {
98
- ( base << INLINE_OFFSETS [ BASE_INDEX ] ) | ( len << INLINE_OFFSETS [ LEN_INDEX ] ) |
99
- ( ctxt << INLINE_OFFSETS [ CTXT_INDEX ] ) | TAG_INLINE
100
- } else {
101
- let index = with_span_interner ( |interner| interner. intern ( sd) ) ;
102
- ( index << INTERNED_INDEX_OFFSET ) | TAG_INTERNED
103
- } ;
104
- Span ( val)
105
- }
106
-
107
- #[ inline]
108
- fn decode ( span : Span ) -> SpanData {
109
- let val = span. 0 ;
110
-
111
- // Extract a field at position `pos` having size `size`.
112
- let extract = |pos : u32 , size : u32 | {
113
- let mask = ( ( !0u32 ) as u64 >> ( 32 - size) ) as u32 ; // Can't shift u32 by 32
114
- ( val >> pos) & mask
115
- } ;
116
-
117
- let ( base, len, ctxt) = if val & TAG_MASK == TAG_INLINE { (
118
- extract ( INLINE_OFFSETS [ BASE_INDEX ] , INLINE_SIZES [ BASE_INDEX ] ) ,
119
- extract ( INLINE_OFFSETS [ LEN_INDEX ] , INLINE_SIZES [ LEN_INDEX ] ) ,
120
- extract ( INLINE_OFFSETS [ CTXT_INDEX ] , INLINE_SIZES [ CTXT_INDEX ] ) ,
121
- ) } else {
122
- let index = extract ( INTERNED_INDEX_OFFSET , INTERNED_INDEX_SIZE ) ;
123
- return with_span_interner ( |interner| * interner. get ( index) ) ;
124
- } ;
125
- SpanData { lo : BytePos ( base) , hi : BytePos ( base + len) , ctxt : SyntaxContext :: from_u32 ( ctxt) }
126
- }
127
-
128
88
#[ derive( Default ) ]
129
89
pub struct SpanInterner {
130
90
spans : FxHashMap < SpanData , u32 > ,
0 commit comments