-
Notifications
You must be signed in to change notification settings - Fork 271
/
sse41.rs
1903 lines (1773 loc) · 67.4 KB
/
sse41.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Streaming SIMD Extensions 4.1 (SSE4.1)
use crate::{
core_arch::{simd::*, simd_llvm::*, x86::*},
mem::transmute,
};
#[cfg(test)]
use stdarch_test::assert_instr;
// SSE4 rounding constants
/// round to nearest
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_NEAREST_INT: i32 = 0x00;
/// round down
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_NEG_INF: i32 = 0x01;
/// round up
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_POS_INF: i32 = 0x02;
/// truncate
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_ZERO: i32 = 0x03;
/// use MXCSR.RC; see `vendor::_MM_SET_ROUNDING_MODE`
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_CUR_DIRECTION: i32 = 0x04;
/// do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_RAISE_EXC: i32 = 0x00;
/// suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_NO_EXC: i32 = 0x08;
/// round to nearest and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_NINT: i32 = 0x00;
/// round down and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_FLOOR: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF;
/// round up and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_CEIL: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF;
/// truncate and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TRUNC: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO;
/// use MXCSR.RC and do not suppress exceptions; see
/// `vendor::_MM_SET_ROUNDING_MODE`
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_RINT: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION;
/// use MXCSR.RC and suppress exceptions; see `vendor::_MM_SET_ROUNDING_MODE`
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_NEARBYINT: i32 = _MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION;
/// Blend packed 8-bit integers from `a` and `b` using `mask`
///
/// The high bit of each corresponding mask byte determines the selection.
/// If the high bit is set the element of `a` is selected. The element
/// of `b` is selected otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pblendvb))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blendv_epi8(a: __m128i, b: __m128i, mask: __m128i) -> __m128i {
let mask: i8x16 = simd_lt(mask.as_i8x16(), i8x16::splat(0));
transmute(simd_select(mask, b.as_i8x16(), a.as_i8x16()))
}
/// Blend packed 16-bit integers from `a` and `b` using the mask `IMM8`.
///
/// The mask bits determine the selection. A clear bit selects the
/// corresponding element of `a`, and a set bit the corresponding
/// element of `b`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pblendw, IMM8 = 0xB1))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blend_epi16<const IMM8: i32>(a: __m128i, b: __m128i) -> __m128i {
static_assert_uimm_bits!(IMM8, 8);
transmute::<i16x8, _>(simd_shuffle!(
a.as_i16x8(),
b.as_i16x8(),
[
[0, 8][IMM8 as usize & 1],
[1, 9][(IMM8 >> 1) as usize & 1],
[2, 10][(IMM8 >> 2) as usize & 1],
[3, 11][(IMM8 >> 3) as usize & 1],
[4, 12][(IMM8 >> 4) as usize & 1],
[5, 13][(IMM8 >> 5) as usize & 1],
[6, 14][(IMM8 >> 6) as usize & 1],
[7, 15][(IMM8 >> 7) as usize & 1],
]
))
}
/// Blend packed double-precision (64-bit) floating-point elements from `a`
/// and `b` using `mask`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(blendvpd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blendv_pd(a: __m128d, b: __m128d, mask: __m128d) -> __m128d {
let mask: i64x2 = simd_lt(transmute::<_, i64x2>(mask), i64x2::splat(0));
transmute(simd_select(mask, b.as_f64x2(), a.as_f64x2()))
}
/// Blend packed single-precision (32-bit) floating-point elements from `a`
/// and `b` using `mask`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(blendvps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blendv_ps(a: __m128, b: __m128, mask: __m128) -> __m128 {
let mask: i32x4 = simd_lt(transmute::<_, i32x4>(mask), i32x4::splat(0));
transmute(simd_select(mask, b.as_f32x4(), a.as_f32x4()))
}
/// Blend packed double-precision (64-bit) floating-point elements from `a`
/// and `b` using control mask `IMM2`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
// Note: LLVM7 prefers the single-precision floating-point domain when possible
// see https://bugs.llvm.org/show_bug.cgi?id=38195
// #[cfg_attr(test, assert_instr(blendpd, IMM2 = 0b10))]
#[cfg_attr(test, assert_instr(blendps, IMM2 = 0b10))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blend_pd<const IMM2: i32>(a: __m128d, b: __m128d) -> __m128d {
static_assert_uimm_bits!(IMM2, 2);
transmute::<f64x2, _>(simd_shuffle!(
a.as_f64x2(),
b.as_f64x2(),
[[0, 2][IMM2 as usize & 1], [1, 3][(IMM2 >> 1) as usize & 1]]
))
}
/// Blend packed single-precision (32-bit) floating-point elements from `a`
/// and `b` using mask `IMM4`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(blendps, IMM4 = 0b0101))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blend_ps<const IMM4: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(IMM4, 4);
transmute::<f32x4, _>(simd_shuffle!(
a.as_f32x4(),
b.as_f32x4(),
[
[0, 4][IMM4 as usize & 1],
[1, 5][(IMM4 >> 1) as usize & 1],
[2, 6][(IMM4 >> 2) as usize & 1],
[3, 7][(IMM4 >> 3) as usize & 1],
]
))
}
/// Extracts a single-precision (32-bit) floating-point element from `a`,
/// selected with `IMM8`. The returned `i32` stores the float's bit-pattern,
/// and may be converted back to a floating point number via casting.
///
/// # Example
/// ```rust
/// # #[cfg(target_arch = "x86")]
/// # use std::arch::x86::*;
/// # #[cfg(target_arch = "x86_64")]
/// # use std::arch::x86_64::*;
/// # fn main() {
/// # if is_x86_feature_detected!("sse4.1") {
/// # #[target_feature(enable = "sse4.1")]
/// # unsafe fn worker() {
/// let mut float_store = vec![1.0, 1.0, 2.0, 3.0];
/// let simd_floats = _mm_set_ps(2.5, 5.0, 7.5, 10.0);
/// let x: i32 = _mm_extract_ps::<2>(simd_floats);
/// float_store.push(f32::from_bits(x as u32));
/// assert_eq!(float_store, vec![1.0, 1.0, 2.0, 3.0, 5.0]);
/// # }
/// # unsafe { worker() }
/// # }
/// # }
/// ```
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(
all(test, not(target_os = "windows")),
assert_instr(extractps, IMM8 = 0)
)]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_extract_ps<const IMM8: i32>(a: __m128) -> i32 {
static_assert_uimm_bits!(IMM8, 2);
simd_extract::<_, f32>(a, IMM8 as u32).to_bits() as i32
}
/// Extracts an 8-bit integer from `a`, selected with `IMM8`. Returns a 32-bit
/// integer containing the zero-extended integer data.
///
/// See [LLVM commit D20468](https://reviews.llvm.org/D20468).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pextrb, IMM8 = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_extract_epi8<const IMM8: i32>(a: __m128i) -> i32 {
static_assert_uimm_bits!(IMM8, 4);
simd_extract::<_, u8>(a.as_u8x16(), IMM8 as u32) as i32
}
/// Extracts an 32-bit integer from `a` selected with `IMM8`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(
all(test, not(target_os = "windows")),
assert_instr(extractps, IMM8 = 1)
)]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_extract_epi32<const IMM8: i32>(a: __m128i) -> i32 {
static_assert_uimm_bits!(IMM8, 2);
simd_extract::<_, i32>(a.as_i32x4(), IMM8 as u32)
}
/// Select a single value in `a` to store at some position in `b`,
/// Then zero elements according to `IMM8`.
///
/// `IMM8` specifies which bits from operand `a` will be copied, which bits in
/// the result they will be copied to, and which bits in the result will be
/// cleared. The following assignments are made:
///
/// * Bits `[7:6]` specify the bits to copy from operand `a`:
/// - `00`: Selects bits `[31:0]` from operand `a`.
/// - `01`: Selects bits `[63:32]` from operand `a`.
/// - `10`: Selects bits `[95:64]` from operand `a`.
/// - `11`: Selects bits `[127:96]` from operand `a`.
///
/// * Bits `[5:4]` specify the bits in the result to which the selected bits
/// from operand `a` are copied:
/// - `00`: Copies the selected bits from `a` to result bits `[31:0]`.
/// - `01`: Copies the selected bits from `a` to result bits `[63:32]`.
/// - `10`: Copies the selected bits from `a` to result bits `[95:64]`.
/// - `11`: Copies the selected bits from `a` to result bits `[127:96]`.
///
/// * Bits `[3:0]`: If any of these bits are set, the corresponding result
/// element is cleared.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(insertps, IMM8 = 0b1010))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_insert_ps<const IMM8: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(IMM8, 8);
insertps(a, b, IMM8 as u8)
}
/// Returns a copy of `a` with the 8-bit integer from `i` inserted at a
/// location specified by `IMM8`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pinsrb, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_insert_epi8<const IMM8: i32>(a: __m128i, i: i32) -> __m128i {
static_assert_uimm_bits!(IMM8, 4);
transmute(simd_insert(a.as_i8x16(), IMM8 as u32, i as i8))
}
/// Returns a copy of `a` with the 32-bit integer from `i` inserted at a
/// location specified by `IMM8`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pinsrd, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_insert_epi32<const IMM8: i32>(a: __m128i, i: i32) -> __m128i {
static_assert_uimm_bits!(IMM8, 2);
transmute(simd_insert(a.as_i32x4(), IMM8 as u32, i))
}
/// Compares packed 8-bit integers in `a` and `b` and returns packed maximum
/// values in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxsb))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epi8(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i8x16();
let b = b.as_i8x16();
transmute(simd_select::<i8x16, _>(simd_gt(a, b), a, b))
}
/// Compares packed unsigned 16-bit integers in `a` and `b`, and returns packed
/// maximum.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxuw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epu16(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u16x8();
let b = b.as_u16x8();
transmute(simd_select::<i16x8, _>(simd_gt(a, b), a, b))
}
/// Compares packed 32-bit integers in `a` and `b`, and returns packed maximum
/// values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epi32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i32x4();
let b = b.as_i32x4();
transmute(simd_select::<i32x4, _>(simd_gt(a, b), a, b))
}
/// Compares packed unsigned 32-bit integers in `a` and `b`, and returns packed
/// maximum values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxud))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epu32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u32x4();
let b = b.as_u32x4();
transmute(simd_select::<i32x4, _>(simd_gt(a, b), a, b))
}
/// Compares packed 8-bit integers in `a` and `b` and returns packed minimum
/// values in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminsb))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epi8(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i8x16();
let b = b.as_i8x16();
transmute(simd_select::<i8x16, _>(simd_lt(a, b), a, b))
}
/// Compares packed unsigned 16-bit integers in `a` and `b`, and returns packed
/// minimum.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminuw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epu16(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u16x8();
let b = b.as_u16x8();
transmute(simd_select::<i16x8, _>(simd_lt(a, b), a, b))
}
/// Compares packed 32-bit integers in `a` and `b`, and returns packed minimum
/// values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epi32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i32x4();
let b = b.as_i32x4();
transmute(simd_select::<i32x4, _>(simd_lt(a, b), a, b))
}
/// Compares packed unsigned 32-bit integers in `a` and `b`, and returns packed
/// minimum values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminud))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epu32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u32x4();
let b = b.as_u32x4();
transmute(simd_select::<i32x4, _>(simd_lt(a, b), a, b))
}
/// Converts packed 32-bit integers from `a` and `b` to packed 16-bit integers
/// using unsigned saturation
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(packusdw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_packus_epi32(a: __m128i, b: __m128i) -> __m128i {
transmute(packusdw(a.as_i32x4(), b.as_i32x4()))
}
/// Compares packed 64-bit integers in `a` and `b` for equality
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pcmpeqq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpeq_epi64(a: __m128i, b: __m128i) -> __m128i {
transmute(simd_eq::<_, i64x2>(a.as_i64x2(), b.as_i64x2()))
}
/// Sign extend packed 8-bit integers in `a` to packed 16-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxbw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi8_epi16(a: __m128i) -> __m128i {
let a = a.as_i8x16();
let a: i8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]);
transmute(simd_cast::<_, i16x8>(a))
}
/// Sign extend packed 8-bit integers in `a` to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxbd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi8_epi32(a: __m128i) -> __m128i {
let a = a.as_i8x16();
let a: i8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Sign extend packed 8-bit integers in the low 8 bytes of `a` to packed
/// 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxbq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi8_epi64(a: __m128i) -> __m128i {
let a = a.as_i8x16();
let a: i8x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Sign extend packed 16-bit integers in `a` to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxwd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi16_epi32(a: __m128i) -> __m128i {
let a = a.as_i16x8();
let a: i16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Sign extend packed 16-bit integers in `a` to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxwq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi16_epi64(a: __m128i) -> __m128i {
let a = a.as_i16x8();
let a: i16x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Sign extend packed 32-bit integers in `a` to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxdq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi32_epi64(a: __m128i) -> __m128i {
let a = a.as_i32x4();
let a: i32x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Zeroes extend packed unsigned 8-bit integers in `a` to packed 16-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxbw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu8_epi16(a: __m128i) -> __m128i {
let a = a.as_u8x16();
let a: u8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]);
transmute(simd_cast::<_, i16x8>(a))
}
/// Zeroes extend packed unsigned 8-bit integers in `a` to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxbd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu8_epi32(a: __m128i) -> __m128i {
let a = a.as_u8x16();
let a: u8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Zeroes extend packed unsigned 8-bit integers in `a` to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxbq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu8_epi64(a: __m128i) -> __m128i {
let a = a.as_u8x16();
let a: u8x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Zeroes extend packed unsigned 16-bit integers in `a`
/// to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxwd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu16_epi32(a: __m128i) -> __m128i {
let a = a.as_u16x8();
let a: u16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Zeroes extend packed unsigned 16-bit integers in `a`
/// to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxwq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu16_epi64(a: __m128i) -> __m128i {
let a = a.as_u16x8();
let a: u16x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Zeroes extend packed unsigned 32-bit integers in `a`
/// to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxdq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu32_epi64(a: __m128i) -> __m128i {
let a = a.as_u32x4();
let a: u32x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Returns the dot product of two __m128d vectors.
///
/// `IMM8[1:0]` is the broadcast mask, and `IMM8[5:4]` is the condition mask.
/// If a condition mask bit is zero, the corresponding multiplication is
/// replaced by a value of `0.0`. If a broadcast mask bit is one, the result of
/// the dot product will be stored in the return value component. Otherwise if
/// the broadcast mask bit is zero then the return component will be zero.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(dppd, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_dp_pd<const IMM8: i32>(a: __m128d, b: __m128d) -> __m128d {
static_assert_uimm_bits!(IMM8, 8);
dppd(a, b, IMM8 as u8)
}
/// Returns the dot product of two __m128 vectors.
///
/// `IMM8[3:0]` is the broadcast mask, and `IMM8[7:4]` is the condition mask.
/// If a condition mask bit is zero, the corresponding multiplication is
/// replaced by a value of `0.0`. If a broadcast mask bit is one, the result of
/// the dot product will be stored in the return value component. Otherwise if
/// the broadcast mask bit is zero then the return component will be zero.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(dpps, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_dp_ps<const IMM8: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(IMM8, 8);
dpps(a, b, IMM8 as u8)
}
/// Round the packed double-precision (64-bit) floating-point elements in `a`
/// down to an integer value, and stores the results as packed double-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundpd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_pd(a: __m128d) -> __m128d {
simd_floor(a)
}
/// Round the packed single-precision (32-bit) floating-point elements in `a`
/// down to an integer value, and stores the results as packed single-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_ps(a: __m128) -> __m128 {
simd_floor(a)
}
/// Round the lower double-precision (64-bit) floating-point element in `b`
/// down to an integer value, store the result as a double-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper element from `a` to the upper element of the intrinsic
/// result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_sd(a: __m128d, b: __m128d) -> __m128d {
roundsd(a, b, _MM_FROUND_FLOOR)
}
/// Round the lower single-precision (32-bit) floating-point element in `b`
/// down to an integer value, store the result as a single-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper 3 packed elements from `a` to the upper elements
/// of the intrinsic result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_ss(a: __m128, b: __m128) -> __m128 {
roundss(a, b, _MM_FROUND_FLOOR)
}
/// Round the packed double-precision (64-bit) floating-point elements in `a`
/// up to an integer value, and stores the results as packed double-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundpd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_pd(a: __m128d) -> __m128d {
simd_ceil(a)
}
/// Round the packed single-precision (32-bit) floating-point elements in `a`
/// up to an integer value, and stores the results as packed single-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_ps(a: __m128) -> __m128 {
simd_ceil(a)
}
/// Round the lower double-precision (64-bit) floating-point element in `b`
/// up to an integer value, store the result as a double-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper element from `a` to the upper element
/// of the intrinsic result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_sd(a: __m128d, b: __m128d) -> __m128d {
roundsd(a, b, _MM_FROUND_CEIL)
}
/// Round the lower single-precision (32-bit) floating-point element in `b`
/// up to an integer value, store the result as a single-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper 3 packed elements from `a` to the upper elements
/// of the intrinsic result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_ss(a: __m128, b: __m128) -> __m128 {
roundss(a, b, _MM_FROUND_CEIL)
}
/// Round the packed double-precision (64-bit) floating-point elements in `a`
/// using the `ROUNDING` parameter, and stores the results as packed
/// double-precision floating-point elements.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundpd, ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_pd<const ROUNDING: i32>(a: __m128d) -> __m128d {
static_assert_uimm_bits!(ROUNDING, 4);
roundpd(a, ROUNDING)
}
/// Round the packed single-precision (32-bit) floating-point elements in `a`
/// using the `ROUNDING` parameter, and stores the results as packed
/// single-precision floating-point elements.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundps, ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_ps<const ROUNDING: i32>(a: __m128) -> __m128 {
static_assert_uimm_bits!(ROUNDING, 4);
roundps(a, ROUNDING)
}
/// Round the lower double-precision (64-bit) floating-point element in `b`
/// using the `ROUNDING` parameter, store the result as a double-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper element from `a` to the upper element of the intrinsic
/// result.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundsd, ROUNDING = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_sd<const ROUNDING: i32>(a: __m128d, b: __m128d) -> __m128d {
static_assert_uimm_bits!(ROUNDING, 4);
roundsd(a, b, ROUNDING)
}
/// Round the lower single-precision (32-bit) floating-point element in `b`
/// using the `ROUNDING` parameter, store the result as a single-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper 3 packed elements from `a` to the upper elements
/// of the intrinsic result.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundss, ROUNDING = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_ss<const ROUNDING: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(ROUNDING, 4);
roundss(a, b, ROUNDING)
}
/// Finds the minimum unsigned 16-bit element in the 128-bit __m128i vector,
/// returning a vector containing its value in its first position, and its
/// index
/// in its second position; all other elements are set to zero.
///
/// This intrinsic corresponds to the `VPHMINPOSUW` / `PHMINPOSUW`
/// instruction.
///
/// Arguments:
///
/// * `a` - A 128-bit vector of type `__m128i`.
///
/// Returns:
///
/// A 128-bit value where:
///
/// * bits `[15:0]` - contain the minimum value found in parameter `a`,
/// * bits `[18:16]` - contain the index of the minimum value
/// * remaining bits are set to `0`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(phminposuw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_minpos_epu16(a: __m128i) -> __m128i {
transmute(phminposuw(a.as_u16x8()))
}
/// Multiplies the low 32-bit integers from each packed 64-bit
/// element in `a` and `b`, and returns the signed 64-bit result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmuldq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_mul_epi32(a: __m128i, b: __m128i) -> __m128i {
let a = simd_cast::<_, i64x2>(simd_cast::<_, i32x2>(a.as_i64x2()));
let b = simd_cast::<_, i64x2>(simd_cast::<_, i32x2>(b.as_i64x2()));
transmute(simd_mul(a, b))
}
/// Multiplies the packed 32-bit integers in `a` and `b`, producing intermediate
/// 64-bit integers, and returns the lowest 32-bit, whatever they might be,
/// reinterpreted as a signed integer. While `pmulld __m128i::splat(2),
/// __m128i::splat(2)` returns the obvious `__m128i::splat(4)`, due to wrapping
/// arithmetic `pmulld __m128i::splat(i32::MAX), __m128i::splat(2)` would
/// return a negative number.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmulld))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_mullo_epi32(a: __m128i, b: __m128i) -> __m128i {
transmute(simd_mul(a.as_i32x4(), b.as_i32x4()))
}
/// Subtracts 8-bit unsigned integer values and computes the absolute
/// values of the differences to the corresponding bits in the destination.
/// Then sums of the absolute differences are returned according to the bit
/// fields in the immediate operand.
///
/// The following algorithm is performed:
///
/// ```ignore
/// i = IMM8[2] * 4
/// j = IMM8[1:0] * 4
/// for k := 0 to 7
/// d0 = abs(a[i + k + 0] - b[j + 0])
/// d1 = abs(a[i + k + 1] - b[j + 1])
/// d2 = abs(a[i + k + 2] - b[j + 2])
/// d3 = abs(a[i + k + 3] - b[j + 3])
/// r[k] = d0 + d1 + d2 + d3
/// ```
///
/// Arguments:
///
/// * `a` - A 128-bit vector of type `__m128i`.
/// * `b` - A 128-bit vector of type `__m128i`.
/// * `IMM8` - An 8-bit immediate operand specifying how the absolute
/// differences are to be calculated
/// * Bit `[2]` specify the offset for operand `a`
/// * Bits `[1:0]` specify the offset for operand `b`
///
/// Returns: