|
7 | 7 | //! For example, LU decomposition to double-precision matrix is provided like:
|
8 | 8 | //!
|
9 | 9 | //! ```ignore
|
10 |
| -//! impl Solve_ for f64 { |
| 10 | +//! impl Lapack for f64 { |
11 | 11 | //! fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot> { ... }
|
12 | 12 | //! }
|
13 | 13 | //! ```
|
14 | 14 | //!
|
15 |
| -//! see [Solve_] for detail. You can use it like `f64::lu`: |
| 15 | +//! see [Lapack] for detail. You can use it like `f64::lu`: |
16 | 16 | //!
|
17 | 17 | //! ```
|
18 |
| -//! use lax::{Solve_, layout::MatrixLayout, Transpose}; |
| 18 | +//! use lax::{Lapack, layout::MatrixLayout, Transpose}; |
19 | 19 | //!
|
20 | 20 | //! let mut a = vec![
|
21 | 21 | //! 1.0, 2.0,
|
|
31 | 31 | //! this trait can be used as a trait bound:
|
32 | 32 | //!
|
33 | 33 | //! ```
|
34 |
| -//! use lax::{Solve_, layout::MatrixLayout, Transpose}; |
| 34 | +//! use lax::{Lapack, layout::MatrixLayout, Transpose}; |
35 | 35 | //!
|
36 |
| -//! fn solve_at_once<T: Solve_>(layout: MatrixLayout, a: &mut [T], b: &mut [T]) -> Result<(), lax::error::Error> { |
| 36 | +//! fn solve_at_once<T: Lapack>(layout: MatrixLayout, a: &mut [T], b: &mut [T]) -> Result<(), lax::error::Error> { |
37 | 37 | //! let pivot = T::lu(layout, a)?;
|
38 | 38 | //! T::solve(layout, Transpose::No, a, &pivot, b)?;
|
39 | 39 | //! Ok(())
|
|
48 | 48 | //!
|
49 | 49 | //! According to the property input metrix, several types of triangular decomposition are used:
|
50 | 50 | //!
|
51 |
| -//! - [Solve_] trait provides methods for LU-decomposition for general matrix. |
| 51 | +//! - [solve] module provides methods for LU-decomposition for general matrix. |
52 | 52 | //! - [Solveh_] triat provides methods for Bunch-Kaufman diagonal pivoting method for symmetric/hermite indefinite matrix.
|
53 | 53 | //! - [Cholesky_] triat provides methods for Cholesky decomposition for symmetric/hermite positive dinite matrix.
|
54 | 54 | //!
|
|
0 commit comments