-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcell.rs
299 lines (280 loc) · 9.32 KB
/
cell.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// ! Provides the wrapper type `VolatileCell`, which wraps any copy-able type and allows for
// ! volatile memory access to wrapped value. Volatile memory accesses are never optimized away by
// ! the compiler, and are useful in many low-level systems programming and concurrent contexts.
// !
// ! # Dealing with Volatile Pointers
// !
// ! Frequently, one may have to deal with volatile pointers, eg, writes to specific memory
// ! locations. The canonical way to solve this is to cast the pointer to a volatile wrapper
// ! directly, eg:
// !
// ! ```rust
// ! use volatile::VolatileCell;
// !
// ! let mut_ptr = 0xFEE00000 as *mut u32;
// !
// ! let volatile_ptr = mut_ptr as *mut VolatileCell<u32>;
// ! ```
// !
// ! and then perform operations on the pointer as usual in a volatile way. This method works as all
// ! of the volatile wrapper types are the same size as their contained values.
use crate::{
access::{Access, ReadWrite, Readable, Writable},
ptr_send::VolatilePtr,
};
use core::{cell::UnsafeCell, fmt, marker::PhantomData, ptr::NonNull};
/// A wrapper type around a volatile variable, which allows for volatile reads and writes
/// to the contained value. The stored type needs to be `Copy`, as volatile reads and writes
/// take and return copies of the value.
///
/// Volatile operations instruct the compiler to skip certain optimizations for these
/// operations. For example, the compiler will not optimize them away even if it thinks
/// that the operations have no observable effect. This is for example desirable when
/// the value is stored in a special memory region that has side effects, such as
/// memory-mapped device registers.
///
/// Note that this wrapper types *does not* enforce any atomicity guarantees. To get atomicity,
/// use the [`core::sync::atomic`] module.
///
/// The size of this struct is the same as the size of the contained type.
///
/// ## Examples
///
/// `VolatileCell` allows writes through shared references, so it's not safe to share
/// references across threads. For this reason, `VolatileCell` does not implement the
/// [`Sync`] trait. As a result, you cannot use the type in statics without synchronization:
///
/// ```compile_fail
/// # use volatile::VolatileCell;
/// // error: VolatileCell is not Sync
/// static FOO: &mut VolatileCell<u8> = todo!();
/// ```
///
/// To use `VolatileCell` in a `static`, wrap it in some type that provides mutual exclusion:
///
/// ```
/// use volatile::VolatileCell;
/// use std::sync::Mutex;
/// static FOO: Mutex<Option<&mut VolatileCell<u8>>> = Mutex::new(None);
/// ```
#[derive(Default)]
#[repr(transparent)]
pub struct VolatileCell<T, A = ReadWrite> {
value: UnsafeCell<T>,
access: PhantomData<A>,
}
impl<T> VolatileCell<T> {
/// Construct a new volatile cell wrapping the given value.
///
/// The returned cell allows read and write operations. Use
/// [`new_restricted`][VolatileCell::new_restricted] to create read-only
/// or write-only cells.
///
/// Calling `VolatileCell::new(v)` is equivalent to calling
/// `VolatileCell::new_restricted(access::ReadWrite, v)`.
///
/// ## Example
///
/// ```rust
/// use volatile::VolatileCell;
///
/// let mut value = VolatileCell::new(0u32);
/// assert_eq!(value.read(), 0);
/// value.write(42);
/// assert_eq!(value.read(), 42);
/// value.update(|v| v + 2 );
/// assert_eq!(value.read(), 44);
/// ```
pub const fn new(value: T) -> Self {
VolatileCell::new_restricted(ReadWrite, value)
}
/// Construct a new volatile cell with restricted access, wrapping the given value.
///
/// ## Examples
///
/// ```
/// use volatile::{VolatileCell, access};
///
/// let mut read_write = VolatileCell::new_restricted(access::ReadWrite, 0u32);
/// read_write.write(100);
/// read_write.update(|v| v / 2);
/// assert_eq!(read_write.read(), 50);
///
/// let read_only = VolatileCell::new_restricted(access::ReadOnly, 0u32);
/// assert_eq!(read_only.read(), 0);
///
/// let mut write_only = VolatileCell::new_restricted(access::WriteOnly, 0u32);
/// write_only.write(1);
/// ```
///
/// ```compile_fail
/// # use volatile::{VolatileCell, access};
/// // reading or updating a write-only value is not allowed
/// let write_only = VolatileCell::new_restricted(access::WriteOnly, 0u32);
/// write_only.read(); // -> compile error
/// write_only.update(|v| v + 1); // -> compile error
/// ```
///
/// ```compile_fail
/// # use volatile::{VolatileCell, access};
/// // writing or updating a write-only value is not allowed
/// let read_only = VolatileCell::new_restricted(access::ReadOnly, 0u32);
/// read_only.write(5); // -> compile error
/// read_only.update(|v| v + 1); // -> compile error
/// ```
pub const fn new_restricted<A>(access: A, value: T) -> VolatileCell<T, A>
where
A: Access,
{
let _ = access;
VolatileCell {
value: UnsafeCell::new(value),
access: PhantomData,
}
}
}
impl<T, A> VolatileCell<T, A> {
pub fn access(&self) -> A
where
A: Access,
{
A::default()
}
pub fn as_ptr(&self) -> VolatilePtr<T, A>
where
A: Access,
{
// UNSAFE: Safe, as we know that our internal value exists.
unsafe {
VolatilePtr::new_restricted(
A::default(),
NonNull::new_unchecked(UnsafeCell::raw_get(&self.value)),
)
}
}
/// Performs a volatile read of the contained value, returning a copy
/// of the read value. Volatile reads are guaranteed not to be optimized
/// away by the compiler, but by themselves do not have atomic ordering
/// guarantees. To also get atomicity, consider looking at the `Atomic` wrapper type.
///
/// ```rust
/// use volatile::VolatileCell;
///
/// let value = VolatileCell::new(42u32);
/// assert_eq!(value.read(), 42u32);
/// ```
pub fn read(&self) -> T
where
A: Readable,
T: Copy,
{
self.as_ptr().read()
}
/// Performs a volatile write, setting the contained value to the given value `value`. Volatile
/// writes are guaranteed to not be optimized away by the compiler, but by themselves do not
/// have atomic ordering guarantees. To also get atomicity, consider looking at the `Atomic`
/// wrapper type.
///
/// ```rust
/// use volatile::VolatileCell;
///
/// let mut value = VolatileCell::new(0u32);
/// value.write(42u32);
/// assert_eq!(value.read(), 42u32);
/// ```
pub fn write(&self, value: T)
where
A: Writable,
T: Copy,
{
self.as_ptr().write(value)
}
/// Performs a volatile read of the contained value, passes a mutable reference to it to the
/// function `f`, and then performs a volatile write of the (potentially updated) value back to
/// the contained value.
///
/// ```rust
/// use volatile::VolatileCell;
///
/// let mut value = VolatileCell::new(21u32);
/// value.update(|val| val * 2);
/// assert_eq!(value.read(), 42u32);
/// ```
pub fn update<F>(&self, f: F)
where
F: FnOnce(T) -> T,
A: Readable + Writable,
T: Copy,
{
let new = f(self.read());
self.write(new);
}
}
/// Create a clone of the `VolatileCell`.
///
/// A `VolatileCell` is clonable only if the cell is marked as readable.
///
/// Note that using a `VolatileCell` only makes sense if the backing memory is
/// actually volatile. Stack memory is not volatile normally, so this clone
/// implementation is not needed in most situations. Instead, it is recommended
/// to read out the wrapped value instead.
///
/// Cloning a `VolatileCell` is equivalent to:
///
/// ```rust
/// # use volatile::VolatileCell;
/// # let volatile_cell = VolatileCell::new(0u32);
/// VolatileCell::new_restricted(volatile_cell.access(), volatile_cell.read())
/// # ;
/// ```
impl<T, A> Clone for VolatileCell<T, A>
where
T: Copy,
A: Readable,
{
fn clone(&self) -> Self {
VolatileCell::new_restricted(self.access(), self.read())
}
}
/// This `Debug` implementation only applies to cells that are [`Readable`]
/// because it includes the wrapped value.
impl<T, A> fmt::Debug for VolatileCell<T, A>
where
T: Copy + fmt::Debug,
A: Readable,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("VolatileCell").field(&self.read()).finish()
}
}
#[cfg(test)]
mod tests {
use super::VolatileCell;
#[test]
fn test_read() {
assert_eq!(VolatileCell::new(42).read(), 42);
}
#[test]
fn test_write() {
let mut volatile = VolatileCell::new(42);
volatile.write(50);
assert_eq!(*volatile.value.get_mut(), 50);
}
#[test]
fn test_update() {
let volatile = VolatileCell::new(42);
volatile.update(|v| v + 1);
assert_eq!(volatile.read(), 43);
}
#[test]
fn test_pointer_recast() {
let mut target_value = 0u32;
let target_ptr: *mut u32 = &mut target_value;
let volatile_ptr = target_ptr as *mut VolatileCell<u32>;
// UNSAFE: Safe, as we know the value exists on the stack.
unsafe {
(*volatile_ptr).write(42u32);
}
assert_eq!(target_value, 42u32);
}
}