-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathneighbor_sample_cpu.cpp
507 lines (458 loc) · 19.7 KB
/
neighbor_sample_cpu.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
#include "neighbor_sample_cpu.h"
#include "utils.h"
#ifdef _WIN32
#include <process.h>
#endif
using namespace std;
namespace {
typedef phmap::flat_hash_map<pair<int64_t, int64_t>, int64_t> temporarl_edge_dict;
template <bool replace, bool directed>
tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
sample(const torch::Tensor &colptr, const torch::Tensor &row,
const torch::Tensor &input_node, const vector<int64_t> num_neighbors) {
// Initialize some data structures for the sampling process:
vector<int64_t> samples;
phmap::flat_hash_map<int64_t, int64_t> to_local_node;
auto *colptr_data = colptr.data_ptr<int64_t>();
auto *row_data = row.data_ptr<int64_t>();
auto *input_node_data = input_node.data_ptr<int64_t>();
for (int64_t i = 0; i < input_node.numel(); i++) {
const auto &v = input_node_data[i];
samples.push_back(v);
to_local_node.insert({v, i});
}
vector<int64_t> rows, cols, edges;
int64_t begin = 0, end = samples.size();
for (int64_t ell = 0; ell < (int64_t)num_neighbors.size(); ell++) {
const auto &num_samples = num_neighbors[ell];
for (int64_t i = begin; i < end; i++) {
const auto &w = samples[i];
const auto &col_start = colptr_data[w];
const auto &col_end = colptr_data[w + 1];
const auto col_count = col_end - col_start;
if (col_count == 0)
continue;
if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
for (int64_t offset = col_start; offset < col_end; offset++) {
const int64_t &v = row_data[offset];
const auto res = to_local_node.insert({v, samples.size()});
if (res.second)
samples.push_back(v);
if (directed) {
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
}
}
} else if (replace) {
for (int64_t j = 0; j < num_samples; j++) {
const int64_t offset = col_start + uniform_randint(col_count);
const int64_t &v = row_data[offset];
const auto res = to_local_node.insert({v, samples.size()});
if (res.second)
samples.push_back(v);
if (directed) {
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
}
}
} else {
unordered_set<int64_t> rnd_indices;
for (int64_t j = col_count - num_samples; j < col_count; j++) {
int64_t rnd = uniform_randint(j);
if (!rnd_indices.insert(rnd).second) {
rnd = j;
rnd_indices.insert(j);
}
const int64_t offset = col_start + rnd;
const int64_t &v = row_data[offset];
const auto res = to_local_node.insert({v, samples.size()});
if (res.second)
samples.push_back(v);
if (directed) {
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
}
}
}
}
begin = end, end = samples.size();
}
if (!directed) {
phmap::flat_hash_map<int64_t, int64_t>::iterator iter;
for (int64_t i = 0; i < (int64_t)samples.size(); i++) {
const auto &w = samples[i];
const auto &col_start = colptr_data[w];
const auto &col_end = colptr_data[w + 1];
for (int64_t offset = col_start; offset < col_end; offset++) {
const auto &v = row_data[offset];
iter = to_local_node.find(v);
if (iter != to_local_node.end()) {
rows.push_back(iter->second);
cols.push_back(i);
edges.push_back(offset);
}
}
}
}
return make_tuple(from_vector<int64_t>(samples), from_vector<int64_t>(rows),
from_vector<int64_t>(cols), from_vector<int64_t>(edges));
}
inline bool satisfy_time(const c10::Dict<node_t, torch::Tensor> &node_time_dict,
const node_t &src_node_type, int64_t dst_time,
int64_t src_node) {
try {
// Check whether src -> dst obeys the time constraint
const torch::Tensor &src_node_time = node_time_dict.at(src_node_type);
return src_node_time.data_ptr<int64_t>()[src_node] <= dst_time;
} catch (const std::out_of_range& e) {
// If no time is given, fall back to normal sampling
return true;
}
}
template <bool replace, bool directed, bool temporal>
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_sample(const vector<node_t> &node_types,
const vector<edge_t> &edge_types,
const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
const c10::Dict<rel_t, torch::Tensor> &row_dict,
const c10::Dict<node_t, torch::Tensor> &input_node_dict,
const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
const c10::Dict<node_t, torch::Tensor> &node_time_dict,
const int64_t num_hops) {
// Create a mapping to convert single string relations to edge type triplets:
phmap::flat_hash_map<rel_t, edge_t> to_edge_type;
for (const auto &k : edge_types)
to_edge_type[get<0>(k) + "__" + get<1>(k) + "__" + get<2>(k)] = k;
// Initialize some data structures for the sampling process:
phmap::flat_hash_map<node_t, vector<int64_t>> samples_dict;
phmap::flat_hash_map<node_t, vector<pair<int64_t, int64_t>>> temp_samples_dict;
phmap::flat_hash_map<node_t, phmap::flat_hash_map<int64_t, int64_t>> to_local_node_dict;
phmap::flat_hash_map<node_t, temporarl_edge_dict> temp_to_local_node_dict;
phmap::flat_hash_map<node_t, vector<int64_t>> root_time_dict;
for (const auto &node_type : node_types) {
samples_dict[node_type];
temp_samples_dict[node_type];
to_local_node_dict[node_type];
temp_to_local_node_dict[node_type];
root_time_dict[node_type];
}
phmap::flat_hash_map<rel_t, vector<int64_t>> rows_dict, cols_dict, edges_dict;
for (const auto &kv : colptr_dict) {
const auto &rel_type = kv.key();
rows_dict[rel_type];
cols_dict[rel_type];
edges_dict[rel_type];
}
// Add the input nodes to the output nodes:
for (const auto &kv : input_node_dict) {
const auto &node_type = kv.key();
const torch::Tensor &input_node = kv.value();
const auto *input_node_data = input_node.data_ptr<int64_t>();
int64_t *node_time_data;
if (temporal) {
const torch::Tensor &node_time = node_time_dict.at(node_type);
node_time_data = node_time.data_ptr<int64_t>();
}
auto &samples = samples_dict.at(node_type);
auto &temp_samples = temp_samples_dict.at(node_type);
auto &to_local_node = to_local_node_dict.at(node_type);
auto &temp_to_local_node = temp_to_local_node_dict.at(node_type);
auto &root_time = root_time_dict.at(node_type);
for (int64_t i = 0; i < input_node.numel(); i++) {
const auto &v = input_node_data[i];
if (temporal) {
temp_samples.push_back({v, i});
temp_to_local_node.insert({{v, i}, i});
} else {
samples.push_back(v);
to_local_node.insert({v, i});
}
if (temporal)
root_time.push_back(node_time_data[v]);
}
}
phmap::flat_hash_map<node_t, pair<int64_t, int64_t>> slice_dict;
if (temporal) {
for (const auto &kv : temp_samples_dict) {
slice_dict[kv.first] = {0, kv.second.size()};
}
} else {
for (const auto &kv : samples_dict)
slice_dict[kv.first] = {0, kv.second.size()};
}
vector<rel_t> all_rel_types;
for (const auto &kv : num_neighbors_dict) {
all_rel_types.push_back(kv.key());
}
std::sort(all_rel_types.begin(), all_rel_types.end());
for (int64_t ell = 0; ell < num_hops; ell++) {
for (const auto &rel_type : all_rel_types) {
const auto &edge_type = to_edge_type[rel_type];
const auto &src_node_type = get<0>(edge_type);
const auto &dst_node_type = get<2>(edge_type);
const auto num_samples = num_neighbors_dict.at(rel_type)[ell];
const auto &dst_samples = samples_dict.at(dst_node_type);
const auto &temp_dst_samples = temp_samples_dict.at(dst_node_type);
auto &src_samples = samples_dict.at(src_node_type);
auto &temp_src_samples = temp_samples_dict.at(src_node_type);
auto &to_local_src_node = to_local_node_dict.at(src_node_type);
auto &temp_to_local_src_node = temp_to_local_node_dict.at(src_node_type);
const torch::Tensor &colptr = colptr_dict.at(rel_type);
const auto *colptr_data = colptr.data_ptr<int64_t>();
const torch::Tensor &row = row_dict.at(rel_type);
const auto *row_data = row.data_ptr<int64_t>();
auto &rows = rows_dict.at(rel_type);
auto &cols = cols_dict.at(rel_type);
auto &edges = edges_dict.at(rel_type);
// For temporal sampling, sampled nodes cannot have a timestamp greater
// than the timestamp of the root nodes:
const auto &dst_root_time = root_time_dict.at(dst_node_type);
auto &src_root_time = root_time_dict.at(src_node_type);
const auto &begin = slice_dict.at(dst_node_type).first;
const auto &end = slice_dict.at(dst_node_type).second;
for (int64_t i = begin; i < end; i++) {
const auto &w = temporal ? temp_dst_samples[i].first : dst_samples[i];
const int64_t root_w = temporal ? temp_dst_samples[i].second : -1;
int64_t dst_time = 0;
if (temporal)
dst_time = dst_root_time[i];
const auto &col_start = colptr_data[w];
const auto &col_end = colptr_data[w + 1];
const auto col_count = col_end - col_start;
if (col_count == 0)
continue;
if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
// Select all neighbors:
for (int64_t offset = col_start; offset < col_end; offset++) {
const int64_t &v = row_data[offset];
if (temporal) {
if (!satisfy_time(node_time_dict, src_node_type, dst_time, v))
continue;
// force disjoint of computation tree based on source batch idx.
// note that the sampling always needs to have directed=True
// for temporal case
// to_local_src_node is not used for temporal / directed case
const auto res = temp_to_local_src_node.insert({{v, root_w}, (int64_t)temp_src_samples.size()});
if (res.second) {
temp_src_samples.push_back({v, root_w});
src_root_time.push_back(dst_time);
}
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
} else {
const auto res = to_local_src_node.insert({v, src_samples.size()});
if (res.second)
src_samples.push_back(v);
if (directed) {
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
}
}
}
} else if (replace) {
// Sample with replacement:
int64_t num_neighbors = 0;
while (num_neighbors < num_samples) {
const int64_t offset = col_start + uniform_randint(col_count);
const int64_t &v = row_data[offset];
if (temporal) {
// TODO Infinity loop if no neighbor satisfies time constraint:
if (!satisfy_time(node_time_dict, src_node_type, dst_time, v))
continue;
// force disjoint of computation tree based on source batch idx.
// note that the sampling always needs to have directed=True
// for temporal case
const auto res = temp_to_local_src_node.insert({{v, root_w}, (int64_t)temp_src_samples.size()});
if (res.second) {
temp_src_samples.push_back({v, root_w});
src_root_time.push_back(dst_time);
}
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
} else {
const auto res = to_local_src_node.insert({v, src_samples.size()});
if (res.second)
src_samples.push_back(v);
if (directed) {
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
}
}
num_neighbors += 1;
}
} else {
// Sample without replacement:
unordered_set<int64_t> rnd_indices;
for (int64_t j = col_count - num_samples; j < col_count; j++) {
int64_t rnd = uniform_randint(j);
if (!rnd_indices.insert(rnd).second) {
rnd = j;
rnd_indices.insert(j);
}
const int64_t offset = col_start + rnd;
const int64_t &v = row_data[offset];
if (temporal) {
if (!satisfy_time(node_time_dict, src_node_type, dst_time, v))
continue;
// force disjoint of computation tree based on source batch idx.
// note that the sampling always needs to have directed=True
// for temporal case
const auto res = temp_to_local_src_node.insert({{v, root_w}, (int64_t)temp_src_samples.size()});
if (res.second) {
temp_src_samples.push_back({v, root_w});
src_root_time.push_back(dst_time);
}
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
} else {
const auto res = to_local_src_node.insert({v, src_samples.size()});
if (res.second)
src_samples.push_back(v);
if (directed) {
cols.push_back(i);
rows.push_back(res.first->second);
edges.push_back(offset);
}
}
}
}
}
}
if (temporal) {
for (const auto &kv : temp_samples_dict) {
slice_dict[kv.first] = {slice_dict.at(kv.first).second, kv.second.size()};
}
} else {
for (const auto &kv : samples_dict)
slice_dict[kv.first] = {slice_dict.at(kv.first).second, kv.second.size()};
}
}
// Temporal sample disable undirected
assert(!(temporal && !directed));
if (!directed) { // Construct the subgraph among the sampled nodes:
phmap::flat_hash_map<int64_t, int64_t>::iterator iter;
for (const auto &kv : colptr_dict) {
const auto &rel_type = kv.key();
const auto &edge_type = to_edge_type[rel_type];
const auto &src_node_type = get<0>(edge_type);
const auto &dst_node_type = get<2>(edge_type);
const auto &dst_samples = samples_dict.at(dst_node_type);
auto &to_local_src_node = to_local_node_dict.at(src_node_type);
const auto *colptr_data = ((torch::Tensor)kv.value()).data_ptr<int64_t>();
const auto *row_data =
((torch::Tensor)row_dict.at(rel_type)).data_ptr<int64_t>();
auto &rows = rows_dict.at(rel_type);
auto &cols = cols_dict.at(rel_type);
auto &edges = edges_dict.at(rel_type);
for (int64_t i = 0; i < (int64_t)dst_samples.size(); i++) {
const auto &w = dst_samples[i];
const auto &col_start = colptr_data[w];
const auto &col_end = colptr_data[w + 1];
for (int64_t offset = col_start; offset < col_end; offset++) {
const auto &v = row_data[offset];
iter = to_local_src_node.find(v);
if (iter != to_local_src_node.end()) {
rows.push_back(iter->second);
cols.push_back(i);
edges.push_back(offset);
}
}
}
}
}
// Construct samples dictionary from temporal sample dictionary.
if (temporal) {
for (const auto &kv : temp_samples_dict) {
const auto &node_type = kv.first;
const auto &samples = kv.second;
samples_dict[node_type].reserve(samples.size());
for (const auto &v : samples) {
samples_dict[node_type].push_back(v.first);
}
}
}
return make_tuple(from_vector<node_t, int64_t>(samples_dict),
from_vector<rel_t, int64_t>(rows_dict),
from_vector<rel_t, int64_t>(cols_dict),
from_vector<rel_t, int64_t>(edges_dict));
}
} // namespace
tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
neighbor_sample_cpu(const torch::Tensor &colptr, const torch::Tensor &row,
const torch::Tensor &input_node,
const vector<int64_t> num_neighbors, const bool replace,
const bool directed) {
if (replace && directed) {
return sample<true, true>(colptr, row, input_node, num_neighbors);
} else if (replace && !directed) {
return sample<true, false>(colptr, row, input_node, num_neighbors);
} else if (!replace && directed) {
return sample<false, true>(colptr, row, input_node, num_neighbors);
} else {
return sample<false, false>(colptr, row, input_node, num_neighbors);
}
}
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_neighbor_sample_cpu(
const vector<node_t> &node_types, const vector<edge_t> &edge_types,
const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
const c10::Dict<rel_t, torch::Tensor> &row_dict,
const c10::Dict<node_t, torch::Tensor> &input_node_dict,
const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
const int64_t num_hops, const bool replace, const bool directed) {
c10::Dict<node_t, torch::Tensor> node_time_dict; // Empty dictionary.
if (replace && directed) {
return hetero_sample<true, true, false>(
node_types, edge_types, colptr_dict, row_dict, input_node_dict,
num_neighbors_dict, node_time_dict, num_hops);
} else if (replace && !directed) {
return hetero_sample<true, false, false>(
node_types, edge_types, colptr_dict, row_dict, input_node_dict,
num_neighbors_dict, node_time_dict, num_hops);
} else if (!replace && directed) {
return hetero_sample<false, true, false>(
node_types, edge_types, colptr_dict, row_dict, input_node_dict,
num_neighbors_dict, node_time_dict, num_hops);
} else {
return hetero_sample<false, false, false>(
node_types, edge_types, colptr_dict, row_dict, input_node_dict,
num_neighbors_dict, node_time_dict, num_hops);
}
}
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_temporal_neighbor_sample_cpu(
const vector<node_t> &node_types, const vector<edge_t> &edge_types,
const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
const c10::Dict<rel_t, torch::Tensor> &row_dict,
const c10::Dict<node_t, torch::Tensor> &input_node_dict,
const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
const c10::Dict<node_t, torch::Tensor> &node_time_dict,
const int64_t num_hops, const bool replace, const bool directed) {
AT_ASSERTM(directed, "Temporal sampling requires 'directed' sampling");
if (replace) {
// We assume that directed = True for temporal sampling
// The current implementation uses disjoint computation trees
// to tackle the case of the same node sampled having different
// root time constraint.
// In future, we could extend to directed = False case,
// allowing additional edges within each computation tree.
return hetero_sample<true, true, true>(
node_types, edge_types, colptr_dict, row_dict, input_node_dict,
num_neighbors_dict, node_time_dict, num_hops);
} else {
return hetero_sample<false, true, true>(
node_types, edge_types, colptr_dict, row_dict, input_node_dict,
num_neighbors_dict, node_time_dict, num_hops);
}
}