forked from CSAILVision/NetDissect
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlabelprobe.py
311 lines (294 loc) · 11.6 KB
/
labelprobe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
'''
labelprobe does the following:
For every sample,
- Get the ground-truth labels.
- Upsample all activations, and make a mask at a .01 top cutoff.
- Accumulate counts of pixels of ground-truth labels (count_g)
- Accumulate counts of pixels of all activations per-image (count_a)
- Accumulate counts of intersections between g and a (count_i)
- Optionally count intesections between each category and a (count_c)
- Tally top 500 intersection counts per unit per sample (count_t).
'''
import glob
import os
import numpy
import re
import upsample
import time
import loadseg
import signal
import multiprocessing
import multiprocessing.pool
import expdir
import sys
import intersect
# Should we tally intersections between each category (as a whole)
# and each units' activations? This can be useful if we wish to
# ignore pixels that are unlabeled in a category when computing
# precision (i.e., count cross-label and not label-to-unlabeled
# confusion). This does not work that well, so we do not tally these.
COUNT_CAT_INTERSECTIONS = False
class NoDaemonProcess(multiprocessing.Process):
# make 'daemon' attribute always return False
def _get_daemon(self):
return False
def _set_daemon(self, value):
pass
daemon = property(_get_daemon, _set_daemon)
# We sub-class multiprocessing.pool.Pool instead of multiprocessing.Pool
# because the latter is only a wrapper function, not a proper class.
class NoDaemonPool(multiprocessing.pool.Pool):
Process = NoDaemonProcess
def label_probe(directory, blob,
batch_size=5, ahead=4, tally_depth=2048,
quantile=0.01, categories=None, verbose=False,
parallel=0):
'''
Evaluates the given blob from the probe stored in the given directory.
Note that as part of the evaluation, the dataset is loaded again.
'''
# Make sure we have a directory to work in
qcode = ('%f' % quantile).replace('0.', '').rstrip('0')
ed = expdir.ExperimentDirectory(directory)
# If the tally file already exists, return.
if ed.has_mmap(blob=blob, part='tally-%s' % qcode):
if verbose:
print 'Have', (ed.mmap_filename(blob=blob, part='tally-%s' % qcode)
), 'already. Skipping.'
return
# Load probe metadata
info = ed.load_info()
ih, iw = info.input_dim
# Load blob metadata
blob_info = ed.load_info(blob=blob)
shape = blob_info.shape
unit_size = shape[1]
fieldmap = blob_info.fieldmap
# Load the blob quantile data and grab thresholds
quantdata = ed.open_mmap(blob=blob, part='quant-*',
shape=(shape[1], -1))
threshold = quantdata[:, int(round(quantdata.shape[1] * quantile))]
thresh = threshold[:, numpy.newaxis, numpy.newaxis]
# Map the blob activation data for reading
fn_read = ed.mmap_filename(blob=blob)
# Load the dataset
ds = loadseg.SegmentationData(info.dataset)
if categories is None:
categories = ds.category_names()
labelcat = onehot(primary_categories_per_index(ds, categories))
# Be sure to zero out the background label - it belongs to no category.
labelcat[0,:] = 0
# Set up output data
# G = ground truth counts
# A = activation counts
# I = intersection counts
# TODO: consider activation_quantile and intersect_quantile
# fn_s = os.path.join(directory, '%s-%s-scores.txt' % (blob, qcode))
# T = tally, a compressed per-sample record of intersection counts.
fn_t = ed.mmap_filename(blob=blob, part='tally-%s' % qcode,
inc=True)
# Create the file so that it can be mapped 'r+'
ed.open_mmap(blob=blob, part='tally-%s' % qcode, mode='w+',
dtype='int32', shape=(ds.size(), tally_depth, 3))
if parallel > 1:
fast_process(fn_t, fn_read, shape, tally_depth, ds, iw, ih,
categories, fieldmap,
thresh, labelcat, batch_size, ahead, verbose, parallel)
else:
process_data(fn_t, fn_read, shape, tally_depth, ds, iw, ih,
categories, fieldmap,
thresh, labelcat, batch_size, ahead, verbose, False,
0, ds.size())
fn_final = re.sub('-inc$', '', fn_t)
if verbose:
print 'Renaming', fn_t, 'to', fn_final
os.rename(fn_t, fn_final)
def fast_process(fn_t, fn_read, shape, tally_depth, ds, iw, ih,
categories, fieldmap,
thresh, labelcat, batch_size, ahead, verbose, parallel):
psize = int(numpy.ceil(float(ds.size()) / parallel))
ranges = [(s, min(ds.size(), s + psize))
for s in range(0, ds.size(), psize) if s < ds.size()]
parallel = len(ranges)
original_sigint_handler = setup_sigint()
# pool = multiprocessing.Pool(processes=parallel, initializer=setup_sigint)
pool = multiprocessing.pool.ThreadPool(processes=parallel)
restore_sigint(original_sigint_handler)
# Precache memmaped files
blobdata = cached_memmap(fn_read, mode='r', dtype='float32',
shape=shape)
count_t = cached_memmap(fn_t, mode='r+', dtype='int32',
shape=(ds.size(), tally_depth, 3))
data = [
(fn_t, fn_read, shape, tally_depth, ds, iw, ih, categories, fieldmap,
thresh, labelcat, batch_size, ahead, verbose, True) + r
for r in ranges]
try:
result = pool.map_async(individual_process, data)
result.get(31536000)
except KeyboardInterrupt:
print("Caught KeyboardInterrupt, terminating workers")
pool.terminate()
raise
else:
pool.close()
pool.join()
def individual_process(args):
process_data(*args)
global_memmap_cache = {}
def cached_memmap(fn, mode, dtype, shape):
global global_memmap_cache
if fn not in global_memmap_cache:
global_memmap_cache[fn] = numpy.memmap(
fn, mode=mode, dtype=dtype, shape=shape)
return global_memmap_cache[fn]
def process_data(fn_t, fn_read, shape, tally_depth, ds, iw, ih,
categories, fieldmap,
thresh, labelcat, batch_size, ahead, verbose, thread,
start, end):
unit_size = len(thresh)
blobdata = cached_memmap(fn_read, mode='r', dtype='float32',
shape=shape)
count_t = cached_memmap(fn_t, mode='r+', dtype='int32',
shape=(ds.size(), tally_depth, 3))
count_t[...] = 0
# The main loop
if verbose:
print 'Beginning work for evaluating', blob
pf = loadseg.SegmentationPrefetcher(ds, categories=categories,
start=start, end=end, once=True,
batch_size=batch_size, ahead=ahead, thread=False)
index = start
start_time = time.time()
last_batch_time = start_time
batch_size = 0
for batch in pf.batches():
batch_time = time.time()
rate = (index - start) / (batch_time - start_time + 1e-15)
batch_rate = batch_size / (batch_time - last_batch_time + 1e-15)
last_batch_time = batch_time
if verbose:
print 'labelprobe index', index, 'items per sec', batch_rate, rate
sys.stdout.flush()
for rec in batch:
sw, sh = [rec[k] for k in ['sw', 'sh']]
reduction = int(round(iw / float(sw)))
up = upsample.upsampleL(fieldmap, blobdata[index],
shape=(sh,sw), reduction=reduction)
mask = up > thresh
accumulate_counts(
mask,
[rec[cat] for cat in categories],
count_t[index],
unit_size,
labelcat)
index += 1
batch_size = len(batch)
count_t.flush()
def accumulate_counts(masks, label_list, tally_i, unit_size, labelcat):
'''
masks shape (256, 192, 192) - 1/0 for each pixel
label_list is a list of items whose shape varies:
() - scalar label for the whole image
(2) - multiple scalar whole-image labels
(192, 192) - scalar per-point
(3, 192, 192) - multiple scalar per-point
tally_i = (32, 3) - 32x3 list of (count, label, unit) (one per sample)
'''
# First convert label_list to scalar-matrix pair
scalars = []
pixels = []
for label_group in label_list:
shape = numpy.shape(label_group)
if len(shape) % 2 == 0:
label_group = [label_group]
if len(shape) < 2:
scalars.append(label_group)
else:
pixels.append(label_group)
labels = (
numpy.concatenate(pixels) if pixels else numpy.array([], dtype=int),
numpy.concatenate(scalars) if scalars else numpy.array([], dtype=int))
intersect.tallyMaskLabel(masks, labels, out=tally_i)
def primary_categories_per_index(ds, categories):
'''
Returns an array of primary category numbers for each label, where the
first category listed in ds.category_names is given category number 0.
'''
catmap = {}
for cat in categories:
imap = ds.category_index_map(cat)
if len(imap) < ds.label_size(None):
imap = numpy.concatenate((imap, numpy.zeros(
ds.label_size(None) - len(imap), dtype=imap.dtype)))
catmap[cat] = imap
result = []
for i in range(ds.label_size(None)):
maxcov, maxcat = max(
(ds.coverage(cat, catmap[cat][i]) if catmap[cat][i] else 0, ic)
for ic, cat in enumerate(categories))
result.append(maxcat)
return numpy.array(result)
def onehot(arr, minlength=None):
'''
Expands an array of integers in one-hot encoding by adding a new last
dimension, leaving zeros everywhere except for the nth dimension, where
the original array contained the integer n. The minlength parameter is
used to indcate the minimum size of the new dimension.
'''
length = numpy.amax(arr) + 1
if minlength is not None:
length = max(minlength, length)
result = numpy.zeros(arr.shape + (length,), dtype='int64')
result[list(numpy.indices(arr.shape)) + [arr]] = 1
return result
def setup_sigint():
return signal.signal(signal.SIGINT, signal.SIG_IGN)
def restore_sigint(original):
if original is None:
original = signal.SIG_DFL
signal.signal(signal.SIGINT, original)
if __name__ == '__main__':
import argparse
import sys
import traceback
try:
parser = argparse.ArgumentParser(
description='Generate evaluation files for probed activation data.')
parser.add_argument(
'--directory',
default='.',
help='output directory for the net probe')
parser.add_argument(
'--blobs',
nargs='*',
help='network blob names to tally')
parser.add_argument(
'--batch_size',
type=int, default=5,
help='the batch size to use')
parser.add_argument(
'--ahead',
type=int, default=4,
help='the prefetch lookahead size')
parser.add_argument(
'--quantile',
type=float, default=0.01,
help='the quantile cutoff to use')
parser.add_argument(
'--tally_depth',
type=int, default=2048,
help='the number of top label counts to tally for each sample')
parser.add_argument(
'--parallel',
type=int, default=0,
help='the number of parallel processes to apply')
args = parser.parse_args()
for blob in args.blobs:
label_probe(args.directory, blob, batch_size=args.batch_size,
ahead=args.ahead, quantile=args.quantile,
tally_depth=args.tally_depth, verbose=True,
parallel=args.parallel)
except:
traceback.print_exc(file=sys.stdout)
sys.exit(1)