-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDESCRIPTION
45 lines (45 loc) · 1.2 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Package: deepredeff
Title: Deep Learning Prediction of Effectors
Version: 0.1.2
Authors@R:
person(given = "Ruth",
family = "Kristianingsih",
role = c("aut", "cre", "cph"),
email = "ruth.kristianingsih30@gmail.com",
comment = c(ORCID = "0000-0003-1873-6203"))
Description: A tool that contains trained deep learning models
for predicting effector proteins. 'deepredeff' has been trained to
identify effector proteins using a set of known experimentally
validated effectors from either bacteria, fungi, or oomycetes.
Documentation is available via several vignettes, and the paper by
Kristianingsih and MacLean (2020) <doi:10.1101/2020.07.08.193250>.
License: MIT + file LICENSE
URL: https://github.com/ruthkr/deepredeff/
BugReports: https://github.com/ruthkr/deepredeff/issues/
Depends:
R (>= 2.10)
Imports:
Biostrings,
dplyr,
ggplot2,
ggthemes,
keras,
magrittr,
purrr,
reticulate,
rlang,
seqinr,
tensorflow
Suggests:
covr,
kableExtra,
knitr,
rmarkdown,
stringr,
testthat
VignetteBuilder:
knitr
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3