-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_RL_omega.py
83 lines (69 loc) · 3.69 KB
/
run_RL_omega.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import blackjack_extended as bjk #The extended Black-Jack environment
import blackjack_base as bjk_base #The standard sum-based Black-Jack environment
from math import inf
import RL as rl
import sys
import os
import plotting as pl
import time
import matplotlib
import pandas as pd
from collections import defaultdict
matplotlib.style.use('ggplot')
if __name__ == "__main__":
directory = "{}/data".format(sys.path[0])
if not os.path.exists(directory):
os.makedirs(directory)
path_fun = lambda x: "{}/{}_{}.txt".format(directory,x, decks)
# init constants
omega = 0.77
omega_list = [0.001,0.01,0.1,0.5,0.9,0.99] # power decay of the learning rate
n_sims = 10 ** 2 # Number of episodes generated
epsilon = 0.05 # Probability in epsilon-soft strategy
init_val = 0.0
warmup = n_sims//10
# Directory to save plots in
plot_dir = "{}/figures/".format(sys.path[0])
frame = pd.DataFrame(columns=['omega','decks','MC','Q1','Q2'])
for omega in omega_list:
for decks in [1,2,6,8,inf]:
print("----- deck number equal to {} -----".format(decks))
# set seed
seed = 31233
# init envs.
env = bjk.BlackjackEnvExtend(decks=decks, seed=seed)
sum_env = bjk_base.BlackjackEnvBase(decks=decks, seed=seed)
print("----- Starting MC training on expanded state space -----")
# MC-learning wit expanded state representation
start_time_MC = time.time()
Q_MC, MC_avg_reward, state_action_count, MC_avg_rewards = rl.learn_MC(
env, n_sims, gamma = 1, epsilon = epsilon, init_val = init_val,
episode_file=path_fun("hand_MC_state"), warmup=warmup)
print("Number of explored states: " + str(len(Q_MC)))
print("Cumulative avg. reward = " + str(MC_avg_reward))
time_to_completion_MC = time.time() - start_time_MC
print("----- Starting Q-learning on expanded state space -----")
# Q-learning with expanded state representation
start_time_expanded = time.time()
Q, avg_reward, state_action_count, avg_rewards = rl.learn_Q(
env, n_sims, gamma = 1, omega = omega, epsilon = epsilon, init_val = init_val,
episode_file=path_fun("hand_state"), warmup=warmup)
print("Number of explored states: " + str(len(Q)))
print("Cumulative avg. reward = " + str(avg_reward))
time_to_completion_expanded = time.time() - start_time_expanded
print("----- Starting Q-learning for sum-based state space -----")
# Q-learning with player sum state representation
start_time_sum = time.time()
sumQ, sum_avg_reward, sum_state_action_count, sum_avg_rewards = rl.learn_Q(
sum_env, n_sims, omega = omega, epsilon = epsilon, init_val = init_val,
episode_file=path_fun("sum_state"), warmup=warmup)
time_to_completion_sum = time.time() - start_time_sum
print("Number of explored states (sum states): " + str(len(sumQ)))
print("Cumulative avg. reward = " + str(sum_avg_reward))
print("Training time: \n " +
"Expanded state space MC: {} \n Expanded state space: {} \n Sum state space: {}".format(
time_to_completion_MC, time_to_completion_expanded, time_to_completion_sum))
frame = frame.append(pd.Series([omega,decks,MC_avg_reward,avg_reward,sum_avg_reward],index = frame.columns),ignore_index=True)
# Convert Q (extended state) to sum state representation and make 3D plots
# Extended state MC-learning
frame.to_csv("omega.csv")