-
-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathnest.py
583 lines (500 loc) · 21 KB
/
nest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
""" Nested Transformer (NesT) in PyTorch
A PyTorch implement of Aggregating Nested Transformers as described in:
'Aggregating Nested Transformers'
- https://arxiv.org/abs/2105.12723
The official Jax code is released and available at https://github.com/google-research/nested-transformer. The weights
have been converted with convert/convert_nest_flax.py
Acknowledgments:
* The paper authors for sharing their research, code, and model weights
* Ross Wightman's existing code off which I based this
Copyright 2021 Alexander Soare
"""
import collections.abc
import logging
import math
from functools import partial
import torch
import torch.nn.functional as F
from torch import nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, create_classifier, trunc_normal_, _assert
from timm.layers import create_conv2d, create_pool2d, to_ntuple, use_fused_attn, LayerNorm
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._manipulate import checkpoint_seq, named_apply
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
__all__ = ['Nest'] # model_registry will add each entrypoint fn to this
_logger = logging.getLogger(__name__)
class Attention(nn.Module):
"""
This is much like `.vision_transformer.Attention` but uses *localised* self attention by accepting an input with
an extra "image block" dim
"""
fused_attn: torch.jit.Final[bool]
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, 3*dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
"""
x is shape: B (batch_size), T (image blocks), N (seq length per image block), C (embed dim)
"""
B, T, N, C = x.shape
# result of next line is (qkv, B, num (H)eads, T, N, (C')hannels per head)
qkv = self.qkv(x).reshape(B, T, N, 3, self.num_heads, C // self.num_heads).permute(3, 0, 4, 1, 2, 5)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.fused_attn:
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1) # (B, H, T, N, N)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
# (B, H, T, N, C'), permute -> (B, T, N, C', H)
x = x.permute(0, 2, 3, 4, 1).reshape(B, T, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x # (B, T, N, C)
class TransformerLayer(nn.Module):
"""
This is much like `.vision_transformer.Block` but:
- Called TransformerLayer here to allow for "block" as defined in the paper ("non-overlapping image blocks")
- Uses modified Attention layer that handles the "block" dimension
"""
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=proj_drop,
)
def forward(self, x):
y = self.norm1(x)
x = x + self.drop_path(self.attn(y))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ConvPool(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer, pad_type=''):
super().__init__()
self.conv = create_conv2d(in_channels, out_channels, kernel_size=3, padding=pad_type, bias=True)
self.norm = norm_layer(out_channels)
self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=pad_type)
def forward(self, x):
"""
x is expected to have shape (B, C, H, W)
"""
_assert(x.shape[-2] % 2 == 0, 'BlockAggregation requires even input spatial dims')
_assert(x.shape[-1] % 2 == 0, 'BlockAggregation requires even input spatial dims')
x = self.conv(x)
# Layer norm done over channel dim only
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
x = self.pool(x)
return x # (B, C, H//2, W//2)
def blockify(x, block_size: int):
"""image to blocks
Args:
x (Tensor): with shape (B, H, W, C)
block_size (int): edge length of a single square block in units of H, W
"""
B, H, W, C = x.shape
_assert(H % block_size == 0, '`block_size` must divide input height evenly')
_assert(W % block_size == 0, '`block_size` must divide input width evenly')
grid_height = H // block_size
grid_width = W // block_size
x = x.reshape(B, grid_height, block_size, grid_width, block_size, C)
x = x.transpose(2, 3).reshape(B, grid_height * grid_width, -1, C)
return x # (B, T, N, C)
@register_notrace_function # reason: int receives Proxy
def deblockify(x, block_size: int):
"""blocks to image
Args:
x (Tensor): with shape (B, T, N, C) where T is number of blocks and N is sequence size per block
block_size (int): edge length of a single square block in units of desired H, W
"""
B, T, _, C = x.shape
grid_size = int(math.sqrt(T))
height = width = grid_size * block_size
x = x.reshape(B, grid_size, grid_size, block_size, block_size, C)
x = x.transpose(2, 3).reshape(B, height, width, C)
return x # (B, H, W, C)
class NestLevel(nn.Module):
""" Single hierarchical level of a Nested Transformer
"""
def __init__(
self,
num_blocks,
block_size,
seq_length,
num_heads,
depth,
embed_dim,
prev_embed_dim=None,
mlp_ratio=4.,
qkv_bias=True,
proj_drop=0.,
attn_drop=0.,
drop_path=[],
norm_layer=None,
act_layer=None,
pad_type='',
):
super().__init__()
self.block_size = block_size
self.grad_checkpointing = False
self.pos_embed = nn.Parameter(torch.zeros(1, num_blocks, seq_length, embed_dim))
if prev_embed_dim is not None:
self.pool = ConvPool(prev_embed_dim, embed_dim, norm_layer=norm_layer, pad_type=pad_type)
else:
self.pool = nn.Identity()
# Transformer encoder
if len(drop_path):
assert len(drop_path) == depth, 'Must provide as many drop path rates as there are transformer layers'
self.transformer_encoder = nn.Sequential(*[
TransformerLayer(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop,
attn_drop=attn_drop,
drop_path=drop_path[i],
norm_layer=norm_layer,
act_layer=act_layer,
)
for i in range(depth)])
def forward(self, x):
"""
expects x as (B, C, H, W)
"""
x = self.pool(x)
x = x.permute(0, 2, 3, 1) # (B, H', W', C), switch to channels last for transformer
x = blockify(x, self.block_size) # (B, T, N, C')
x = x + self.pos_embed
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.transformer_encoder, x)
else:
x = self.transformer_encoder(x) # (B, T, N, C')
x = deblockify(x, self.block_size) # (B, H', W', C')
# Channel-first for block aggregation, and generally to replicate convnet feature map at each stage
return x.permute(0, 3, 1, 2) # (B, C, H', W')
class Nest(nn.Module):
""" Nested Transformer (NesT)
A PyTorch impl of : `Aggregating Nested Transformers`
- https://arxiv.org/abs/2105.12723
"""
def __init__(
self,
img_size=224,
in_chans=3,
patch_size=4,
num_levels=3,
embed_dims=(128, 256, 512),
num_heads=(4, 8, 16),
depths=(2, 2, 20),
num_classes=1000,
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.,
proj_drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.5,
norm_layer=None,
act_layer=None,
pad_type='',
weight_init='',
global_pool='avg',
):
"""
Args:
img_size (int, tuple): input image size
in_chans (int): number of input channels
patch_size (int): patch size
num_levels (int): number of block hierarchies (T_d in the paper)
embed_dims (int, tuple): embedding dimensions of each level
num_heads (int, tuple): number of attention heads for each level
depths (int, tuple): number of transformer layers for each level
num_classes (int): number of classes for classification head
mlp_ratio (int): ratio of mlp hidden dim to embedding dim for MLP of transformer layers
qkv_bias (bool): enable bias for qkv if True
drop_rate (float): dropout rate for MLP of transformer layers, MSA final projection layer, and classifier
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer for transformer layers
act_layer: (nn.Module): activation layer in MLP of transformer layers
pad_type: str: Type of padding to use '' for PyTorch symmetric, 'same' for TF SAME
weight_init: (str): weight init scheme
global_pool: (str): type of pooling operation to apply to final feature map
Notes:
- Default values follow NesT-B from the original Jax code.
- `embed_dims`, `num_heads`, `depths` should be ints or tuples with length `num_levels`.
- For those following the paper, Table A1 may have errors!
- https://github.com/google-research/nested-transformer/issues/2
"""
super().__init__()
for param_name in ['embed_dims', 'num_heads', 'depths']:
param_value = locals()[param_name]
if isinstance(param_value, collections.abc.Sequence):
assert len(param_value) == num_levels, f'Require `len({param_name}) == num_levels`'
embed_dims = to_ntuple(num_levels)(embed_dims)
num_heads = to_ntuple(num_levels)(num_heads)
depths = to_ntuple(num_levels)(depths)
self.num_classes = num_classes
self.num_features = self.head_hidden_size = embed_dims[-1]
self.feature_info = []
norm_layer = norm_layer or LayerNorm
act_layer = act_layer or nn.GELU
self.drop_rate = drop_rate
self.num_levels = num_levels
if isinstance(img_size, collections.abc.Sequence):
assert img_size[0] == img_size[1], 'Model only handles square inputs'
img_size = img_size[0]
assert img_size % patch_size == 0, '`patch_size` must divide `img_size` evenly'
self.patch_size = patch_size
# Number of blocks at each level
self.num_blocks = (4 ** torch.arange(num_levels)).flip(0).tolist()
assert (img_size // patch_size) % math.sqrt(self.num_blocks[0]) == 0, \
'First level blocks don\'t fit evenly. Check `img_size`, `patch_size`, and `num_levels`'
# Block edge size in units of patches
# Hint: (img_size // patch_size) gives number of patches along edge of image. sqrt(self.num_blocks[0]) is the
# number of blocks along edge of image
self.block_size = int((img_size // patch_size) // math.sqrt(self.num_blocks[0]))
# Patch embedding
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dims[0],
flatten=False,
)
self.num_patches = self.patch_embed.num_patches
self.seq_length = self.num_patches // self.num_blocks[0]
# Build up each hierarchical level
levels = []
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
prev_dim = None
curr_stride = 4
for i in range(len(self.num_blocks)):
dim = embed_dims[i]
levels.append(NestLevel(
self.num_blocks[i],
self.block_size,
self.seq_length,
num_heads[i],
depths[i],
dim,
prev_dim,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dp_rates[i],
norm_layer=norm_layer,
act_layer=act_layer,
pad_type=pad_type,
))
self.feature_info += [dict(num_chs=dim, reduction=curr_stride, module=f'levels.{i}')]
prev_dim = dim
curr_stride *= 2
self.levels = nn.Sequential(*levels)
# Final normalization layer
self.norm = norm_layer(embed_dims[-1])
# Classifier
global_pool, head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
self.global_pool = global_pool
self.head_drop = nn.Dropout(drop_rate)
self.head = head
self.init_weights(weight_init)
@torch.jit.ignore
def init_weights(self, mode=''):
assert mode in ('nlhb', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
for level in self.levels:
trunc_normal_(level.pos_embed, std=.02, a=-2, b=2)
named_apply(partial(_init_nest_weights, head_bias=head_bias), self)
@torch.jit.ignore
def no_weight_decay(self):
return {f'level.{i}.pos_embed' for i in range(len(self.levels))}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^patch_embed', # stem and embed
blocks=[
(r'^levels\.(\d+)' if coarse else r'^levels\.(\d+)\.transformer_encoder\.(\d+)', None),
(r'^levels\.(\d+)\.(?:pool|pos_embed)', (0,)),
(r'^norm', (99999,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for l in self.levels:
l.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.head = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
x = self.patch_embed(x)
x = self.levels(x)
# Layer norm done over channel dim only (to NHWC and back)
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _init_nest_weights(module: nn.Module, name: str = '', head_bias: float = 0.):
""" NesT weight initialization
Can replicate Jax implementation. Otherwise follows vision_transformer.py
"""
if isinstance(module, nn.Linear):
if name.startswith('head'):
trunc_normal_(module.weight, std=.02, a=-2, b=2)
nn.init.constant_(module.bias, head_bias)
else:
trunc_normal_(module.weight, std=.02, a=-2, b=2)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv2d):
trunc_normal_(module.weight, std=.02, a=-2, b=2)
if module.bias is not None:
nn.init.zeros_(module.bias)
def resize_pos_embed(posemb, posemb_new):
"""
Rescale the grid of position embeddings when loading from state_dict
Expected shape of position embeddings is (1, T, N, C), and considers only square images
"""
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
seq_length_old = posemb.shape[2]
num_blocks_new, seq_length_new = posemb_new.shape[1:3]
size_new = int(math.sqrt(num_blocks_new*seq_length_new))
# First change to (1, C, H, W)
posemb = deblockify(posemb, int(math.sqrt(seq_length_old))).permute(0, 3, 1, 2)
posemb = F.interpolate(posemb, size=[size_new, size_new], mode='bicubic', align_corners=False)
# Now change to new (1, T, N, C)
posemb = blockify(posemb.permute(0, 2, 3, 1), int(math.sqrt(seq_length_new)))
return posemb
def checkpoint_filter_fn(state_dict, model):
""" resize positional embeddings of pretrained weights """
pos_embed_keys = [k for k in state_dict.keys() if k.startswith('pos_embed_')]
for k in pos_embed_keys:
if state_dict[k].shape != getattr(model, k).shape:
state_dict[k] = resize_pos_embed(state_dict[k], getattr(model, k))
return state_dict
def _create_nest(variant, pretrained=False, **kwargs):
model = build_model_with_cfg(
Nest,
variant,
pretrained,
feature_cfg=dict(out_indices=(0, 1, 2), flatten_sequential=True),
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs,
)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': [14, 14],
'crop_pct': .875, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'nest_base.untrained': _cfg(),
'nest_small.untrained': _cfg(),
'nest_tiny.untrained': _cfg(),
# (weights from official Google JAX impl, require 'SAME' padding)
'nest_base_jx.goog_in1k': _cfg(hf_hub_id='timm/'),
'nest_small_jx.goog_in1k': _cfg(hf_hub_id='timm/'),
'nest_tiny_jx.goog_in1k': _cfg(hf_hub_id='timm/'),
})
@register_model
def nest_base(pretrained=False, **kwargs) -> Nest:
""" Nest-B @ 224x224
"""
model_kwargs = dict(
embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs)
model = _create_nest('nest_base', pretrained=pretrained, **model_kwargs)
return model
@register_model
def nest_small(pretrained=False, **kwargs) -> Nest:
""" Nest-S @ 224x224
"""
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs)
model = _create_nest('nest_small', pretrained=pretrained, **model_kwargs)
return model
@register_model
def nest_tiny(pretrained=False, **kwargs) -> Nest:
""" Nest-T @ 224x224
"""
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs)
model = _create_nest('nest_tiny', pretrained=pretrained, **model_kwargs)
return model
@register_model
def nest_base_jx(pretrained=False, **kwargs) -> Nest:
""" Nest-B @ 224x224
"""
kwargs.setdefault('pad_type', 'same')
model_kwargs = dict(
embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs)
model = _create_nest('nest_base_jx', pretrained=pretrained, **model_kwargs)
return model
@register_model
def nest_small_jx(pretrained=False, **kwargs) -> Nest:
""" Nest-S @ 224x224
"""
kwargs.setdefault('pad_type', 'same')
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs)
model = _create_nest('nest_small_jx', pretrained=pretrained, **model_kwargs)
return model
@register_model
def nest_tiny_jx(pretrained=False, **kwargs) -> Nest:
""" Nest-T @ 224x224
"""
kwargs.setdefault('pad_type', 'same')
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs)
model = _create_nest('nest_tiny_jx', pretrained=pretrained, **model_kwargs)
return model
register_model_deprecations(__name__, {
'jx_nest_base': 'nest_base_jx',
'jx_nest_small': 'nest_small_jx',
'jx_nest_tiny': 'nest_tiny_jx',
})