-
-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathpnasnet.py
378 lines (308 loc) · 15.1 KB
/
pnasnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""
pnasnet5large implementation grabbed from Cadene's pretrained models
Additional credit to https://github.com/creafz
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/pnasnet.py
"""
from collections import OrderedDict
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs
__all__ = ['PNASNet5Large']
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''):
super(SeparableConv2d, self).__init__()
self.depthwise_conv2d = create_conv2d(
in_channels, in_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=in_channels)
self.pointwise_conv2d = create_conv2d(
in_channels, out_channels, kernel_size=1, padding=padding)
def forward(self, x):
x = self.depthwise_conv2d(x)
x = self.pointwise_conv2d(x)
return x
class BranchSeparables(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, stem_cell=False, padding=''):
super(BranchSeparables, self).__init__()
middle_channels = out_channels if stem_cell else in_channels
self.act_1 = nn.ReLU()
self.separable_1 = SeparableConv2d(
in_channels, middle_channels, kernel_size, stride=stride, padding=padding)
self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001)
self.act_2 = nn.ReLU()
self.separable_2 = SeparableConv2d(
middle_channels, out_channels, kernel_size, stride=1, padding=padding)
self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.act_1(x)
x = self.separable_1(x)
x = self.bn_sep_1(x)
x = self.act_2(x)
x = self.separable_2(x)
x = self.bn_sep_2(x)
return x
class ActConvBn(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''):
super(ActConvBn, self).__init__()
self.act = nn.ReLU()
self.conv = create_conv2d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.act(x)
x = self.conv(x)
x = self.bn(x)
return x
class FactorizedReduction(nn.Module):
def __init__(self, in_channels, out_channels, padding=''):
super(FactorizedReduction, self).__init__()
self.act = nn.ReLU()
self.path_1 = nn.Sequential(OrderedDict([
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)),
]))
self.path_2 = nn.Sequential(OrderedDict([
('pad', nn.ZeroPad2d((-1, 1, -1, 1))), # shift
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)),
]))
self.final_path_bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.act(x)
x_path1 = self.path_1(x)
x_path2 = self.path_2(x)
out = self.final_path_bn(torch.cat([x_path1, x_path2], 1))
return out
class CellBase(nn.Module):
def cell_forward(self, x_left, x_right):
x_comb_iter_0_left = self.comb_iter_0_left(x_left)
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_right)
x_comb_iter_1_right = self.comb_iter_1_right(x_right)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
x_comb_iter_2_right = self.comb_iter_2_right(x_right)
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right
x_comb_iter_3_left = self.comb_iter_3_left(x_comb_iter_2)
x_comb_iter_3_right = self.comb_iter_3_right(x_right)
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right
x_comb_iter_4_left = self.comb_iter_4_left(x_left)
if self.comb_iter_4_right is not None:
x_comb_iter_4_right = self.comb_iter_4_right(x_right)
else:
x_comb_iter_4_right = x_right
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right
x_out = torch.cat([x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class CellStem0(CellBase):
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
super(CellStem0, self).__init__()
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type)
self.comb_iter_0_left = BranchSeparables(
in_chs_left, out_chs_left, kernel_size=5, stride=2, stem_cell=True, padding=pad_type)
self.comb_iter_0_right = nn.Sequential(OrderedDict([
('max_pool', create_pool2d('max', 3, stride=2, padding=pad_type)),
('conv', create_conv2d(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)),
('bn', nn.BatchNorm2d(out_chs_left, eps=0.001)),
]))
self.comb_iter_1_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=7, stride=2, padding=pad_type)
self.comb_iter_1_right = create_pool2d('max', 3, stride=2, padding=pad_type)
self.comb_iter_2_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=5, stride=2, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=3, stride=2, padding=pad_type)
self.comb_iter_3_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=3, padding=pad_type)
self.comb_iter_3_right = create_pool2d('max', 3, stride=2, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(
in_chs_right, out_chs_right, kernel_size=3, stride=2, stem_cell=True, padding=pad_type)
self.comb_iter_4_right = ActConvBn(
out_chs_right, out_chs_right, kernel_size=1, stride=2, padding=pad_type)
def forward(self, x_left):
x_right = self.conv_1x1(x_left)
x_out = self.cell_forward(x_left, x_right)
return x_out
class Cell(CellBase):
def __init__(
self,
in_chs_left,
out_chs_left,
in_chs_right,
out_chs_right,
pad_type='',
is_reduction=False,
match_prev_layer_dims=False,
):
super(Cell, self).__init__()
# If `is_reduction` is set to `True` stride 2 is used for
# convolution and pooling layers to reduce the spatial size of
# the output of a cell approximately by a factor of 2.
stride = 2 if is_reduction else 1
# If `match_prev_layer_dimensions` is set to `True`
# `FactorizedReduction` is used to reduce the spatial size
# of the left input of a cell approximately by a factor of 2.
self.match_prev_layer_dimensions = match_prev_layer_dims
if match_prev_layer_dims:
self.conv_prev_1x1 = FactorizedReduction(in_chs_left, out_chs_left, padding=pad_type)
else:
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type)
self.comb_iter_0_left = BranchSeparables(
out_chs_left, out_chs_left, kernel_size=5, stride=stride, padding=pad_type)
self.comb_iter_0_right = create_pool2d('max', 3, stride=stride, padding=pad_type)
self.comb_iter_1_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=7, stride=stride, padding=pad_type)
self.comb_iter_1_right = create_pool2d('max', 3, stride=stride, padding=pad_type)
self.comb_iter_2_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=5, stride=stride, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=3, stride=stride, padding=pad_type)
self.comb_iter_3_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3)
self.comb_iter_3_right = create_pool2d('max', 3, stride=stride, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(
out_chs_left, out_chs_left, kernel_size=3, stride=stride, padding=pad_type)
if is_reduction:
self.comb_iter_4_right = ActConvBn(
out_chs_right, out_chs_right, kernel_size=1, stride=stride, padding=pad_type)
else:
self.comb_iter_4_right = None
def forward(self, x_left, x_right):
x_left = self.conv_prev_1x1(x_left)
x_right = self.conv_1x1(x_right)
x_out = self.cell_forward(x_left, x_right)
return x_out
class PNASNet5Large(nn.Module):
def __init__(
self,
num_classes=1000,
in_chans=3,
output_stride=32,
drop_rate=0.,
global_pool='avg',
pad_type='',
):
super(PNASNet5Large, self).__init__()
self.num_classes = num_classes
self.num_features = self.head_hidden_size = 4320
assert output_stride == 32
self.conv_0 = ConvNormAct(
in_chans, 96, kernel_size=3, stride=2, padding=0,
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False)
self.cell_stem_0 = CellStem0(
in_chs_left=96, out_chs_left=54, in_chs_right=96, out_chs_right=54, pad_type=pad_type)
self.cell_stem_1 = Cell(
in_chs_left=96, out_chs_left=108, in_chs_right=270, out_chs_right=108, pad_type=pad_type,
match_prev_layer_dims=True, is_reduction=True)
self.cell_0 = Cell(
in_chs_left=270, out_chs_left=216, in_chs_right=540, out_chs_right=216, pad_type=pad_type,
match_prev_layer_dims=True)
self.cell_1 = Cell(
in_chs_left=540, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
self.cell_2 = Cell(
in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
self.cell_3 = Cell(
in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
self.cell_4 = Cell(
in_chs_left=1080, out_chs_left=432, in_chs_right=1080, out_chs_right=432, pad_type=pad_type,
is_reduction=True)
self.cell_5 = Cell(
in_chs_left=1080, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type,
match_prev_layer_dims=True)
self.cell_6 = Cell(
in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type)
self.cell_7 = Cell(
in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type)
self.cell_8 = Cell(
in_chs_left=2160, out_chs_left=864, in_chs_right=2160, out_chs_right=864, pad_type=pad_type,
is_reduction=True)
self.cell_9 = Cell(
in_chs_left=2160, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type,
match_prev_layer_dims=True)
self.cell_10 = Cell(
in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type)
self.cell_11 = Cell(
in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type)
self.act = nn.ReLU()
self.feature_info = [
dict(num_chs=96, reduction=2, module='conv_0'),
dict(num_chs=270, reduction=4, module='cell_stem_1.conv_1x1.act'),
dict(num_chs=1080, reduction=8, module='cell_4.conv_1x1.act'),
dict(num_chs=2160, reduction=16, module='cell_8.conv_1x1.act'),
dict(num_chs=4320, reduction=32, module='act'),
]
self.global_pool, self.head_drop, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(stem=r'^conv_0|cell_stem_[01]', blocks=r'^cell_(\d+)')
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
x_conv_0 = self.conv_0(x)
x_stem_0 = self.cell_stem_0(x_conv_0)
x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0)
x_cell_0 = self.cell_0(x_stem_0, x_stem_1)
x_cell_1 = self.cell_1(x_stem_1, x_cell_0)
x_cell_2 = self.cell_2(x_cell_0, x_cell_1)
x_cell_3 = self.cell_3(x_cell_1, x_cell_2)
x_cell_4 = self.cell_4(x_cell_2, x_cell_3)
x_cell_5 = self.cell_5(x_cell_3, x_cell_4)
x_cell_6 = self.cell_6(x_cell_4, x_cell_5)
x_cell_7 = self.cell_7(x_cell_5, x_cell_6)
x_cell_8 = self.cell_8(x_cell_6, x_cell_7)
x_cell_9 = self.cell_9(x_cell_7, x_cell_8)
x_cell_10 = self.cell_10(x_cell_8, x_cell_9)
x_cell_11 = self.cell_11(x_cell_9, x_cell_10)
x = self.act(x_cell_11)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
x = self.head_drop(x)
return x if pre_logits else self.last_linear(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_pnasnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
PNASNet5Large,
variant,
pretrained,
feature_cfg=dict(feature_cls='hook', no_rewrite=True), # not possible to re-write this model
**kwargs,
)
default_cfgs = generate_default_cfgs({
'pnasnet5large.tf_in1k': {
'hf_hub_id': 'timm/',
'input_size': (3, 331, 331),
'pool_size': (11, 11),
'crop_pct': 0.911,
'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5),
'std': (0.5, 0.5, 0.5),
'num_classes': 1000,
'first_conv': 'conv_0.conv',
'classifier': 'last_linear',
},
})
@register_model
def pnasnet5large(pretrained=False, **kwargs) -> PNASNet5Large:
r"""PNASNet-5 model architecture from the
`"Progressive Neural Architecture Search"
<https://arxiv.org/abs/1712.00559>`_ paper.
"""
model_kwargs = dict(pad_type='same', **kwargs)
return _create_pnasnet('pnasnet5large', pretrained, **model_kwargs)