-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
74 lines (58 loc) · 2.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from bissection import *
from lagrange import *
from newton import *
from sympy import solve, simplify
from sympy.abc import x
from controller import *
from expression import Expression
if __name__ == "__main__":
# Variables
roots = []
root = 0
bissection_table = []
newton_table = []
f: Expression = Expression.input("Escreva a função: ")
if not f.expr.is_polynomial():
print(solve(f.expr, x))
exit(0)
while f.when(0) == 0:
roots += [0]
f = Expression(simplify(f.expr / x))
while True:
intervals_list = []
new_roots = []
root: float = 0.0
if not f.expr.is_polynomial():
break
if not f.has_x():
break
if f.has_degree(1):
c0 = f.get_coeff(0)
c1 = f.get_coeff(1)
root = (-1) * c0 / c1
roots += [root]
break
intervals_list = get_intervals(f)
if intervals_list == None or intervals_list == []:
break
intervals_list = filter_intervals(f, intervals_list)
if intervals_list == None or intervals_list == []:
break
for i in intervals_list:
interval_refined = []
bissection_table = []
newton_table = []
interval_refined = prerefinement(f, i, bissection_table, 10**-3)
print("O pré-refinamento com método da Bisseção foi realizado com sucesso.")
root = refinement_newton(f, interval_refined, newton_table)
if root != None:
print("O refinamento com método de Newton foi realizado com sucesso.")
else:
print("Os requisitos para o refinamento com o método Newton não foram atendidos.")
root = refinement_bissection(f, interval_refined, bissection_table, 10**-7)
print("O refinamento com método da Bisseção foi realizado com sucesso.")
print_table_roots(bissection_table, newton_table)
new_roots += [root]
f = deflate_equation(f, new_roots)
roots += new_roots
print("\nRaízes: ", roots)