-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathfeaturematrix_test.go
68 lines (55 loc) · 2.62 KB
/
featurematrix_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
package CloudForest
import (
"strings"
"testing"
)
//A toy feature matrix where either of the first
//two variables should be easilly predictible
//by the other by a single greedy tree.
var constantsfm = `. 0 1 2 3 4 5 6 7
C:CatTarget 0 0 0 0 0 1 1 1
N:GoodVals 0 0 0 0 0 1 1 1
C:Const1 0 0 0 0 0 0 0 1
C:Const2 0 0 0 0 0 0 0 1
C:Const3 0 0 0 0 0 0 0 1
N:Const4 0 0 0 0 0 0 0 1
N:Const5 0 0 0 0 0 0 0 1
N:Const6 0 0 0 0 0 0 0 1`
func TestBestSplitter(t *testing.T) {
//wierd targets that don't meat the performance standards
//so we check to make sure they at least grow trees
fmReader := strings.NewReader(constantsfm)
fm := ParseAFM(fmReader)
target := fm.Data[0]
cases := &[]int{0, 1, 2, 3, 4, 5, 6}
candidates := []int{1, 2, 3, 4, 5, 6, 7}
allocs := NewBestSplitAllocs(len(*cases), target)
_, imp, constant := fm.Data[1].BestSplit(target, cases, 1, 1, false, allocs)
if imp <= minImp || constant == true {
t.Errorf("Good feature had imp %v and constant: %v", imp, constant)
}
_, imp, constant = fm.Data[2].BestSplit(target, cases, 1, 1, false, allocs)
if imp > minImp || constant == false {
t.Errorf("Constant cat feature had imp %v and constant: %v %v", imp, constant, fm.Data[2].(*DenseCatFeature).CatData)
}
_, imp, constant = fm.Data[7].BestSplit(target, cases, 1, 1, false, allocs)
if imp > minImp || constant == false {
t.Errorf("Constant num feature had imp %v and constant: %v", imp, constant)
}
fi, split, impDec, nconstants := fm.BestSplitter(target, cases, &candidates, len(candidates), nil, 1, true, false, false, false, allocs, 0)
if fi != 1 || split == nil || impDec == minImp || nconstants != 6 {
t.Errorf("BestSplitter couldn't find non constant feature and six constants fi: %v split: %v impDex: %v nconstants: %v ", fi, split, impDec, nconstants)
}
for i := 0; i < 7; i++ {
candidates = []int{1, 2, 3, 4, 5, 6, 7}
fi, split, impDec, nconstants = fm.BestSplitter(target, cases, &candidates, 1, nil, 1, true, false, false, false, allocs, i)
if fi != 1 || split == nil || impDec == minImp {
t.Errorf("BestSplitter couldn't find non constant feature with mTry=1 and %v known constants fi: %v split: %v impDex: %v nconstants: %v ", i, fi, split, impDec, nconstants)
}
candidates = []int{1, 2, 3, 4, 5, 6, 7}
fi, split, impDec, nconstants = fm.BestSplitter(target, cases, &candidates, len(candidates), nil, 1, true, false, false, false, allocs, i)
if fi != 1 || split == nil || impDec == minImp || nconstants != 6 {
t.Errorf("BestSplitter couldn't find non constant feature and six constants with %v known constants fi: %v split: %v impDex: %v nconstants: %v ", i, fi, split, impDec, nconstants)
}
}
}