-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_results_creator_v2.py
125 lines (101 loc) · 3.52 KB
/
main_results_creator_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from tqdm.auto import tqdm
from augmentation.augment import valid_transform
import torch
from metrics.ineval import compute_f1
import pickle
from pathlib import Path
from PIL import Image
from metrics.utils.solution_utils import (
get_solution,
beam_search_decoder,
compute_intervals,
)
from models.upscale_i3d_detection import UpscaleI3dDectection
from reader_utils.reader import get_frames, transform_frames, get_data_point
from argparse import ArgumentParser
parser = ArgumentParser(parents=[])
parser.add_argument(
"--lmdb_dir",
type=str,
default="lmdb_videos/test",
)
parser.add_argument(
"--checkpoint_dir",
type=str,
default="",
)
parser.add_argument(
"--save_dir",
type=str,
default="",
)
params, unknown = parser.parse_known_args()
lmdb_dir = params.lmdb_dir
checkpoint_dir = params.checkpoint_dir
save_dir = params.save_dir
split = lmdb_dir.split("/")[-1]
save_folder = f"{checkpoint_dir.split('/')[-3]}_{checkpoint_dir.split('.')[-2]}"
Path(f"{save_dir}/{split}/{save_folder}").mkdir(parents=True, exist_ok=True)
seq_len = 32
num_classes = 60
i3d_model_params = {
"num_classes": num_classes,
"ckpt_path": None,
"activation": "swish",
}
head_model_params = {
"num_classes": num_classes,
"input_dim": 1024,
"dropout_seg": 0.5,
"dropout_time": 0.5,
}
model_params = {
"i3d_model_params": i3d_model_params,
"head_model_params": head_model_params,
}
model = UpscaleI3dDectection(i3d_model_params, head_model_params)
ckpt = torch.load(checkpoint_dir)
r = model.load_state_dict(ckpt["model"])
print(r)
model.cuda()
model.eval()
data = get_data_point(lmdb_dir, "details")
list_of_item_names = list(data.keys())
dict_results = {}
for item_name in tqdm(list_of_item_names):
item_data = get_data_point(lmdb_dir, item_name)
item_frames = get_frames(item_data)
norm_frames = transform_frames(item_frames, valid_transform)
with torch.no_grad():
list_of_time_outs_x = []
list_of_time_outs_x4 = []
list_of_time_outs_x8 = []
list_of_time_outs_x16 = []
list_of_time_outs_x32 = []
list_of_x = []
for i in tqdm(range(0, norm_frames.shape[0] - seq_len), leave=False):
x = norm_frames[i : i + seq_len].cuda()
list_of_x.append(x)
if len(list_of_x) >= 8:
x = torch.stack(list_of_x)
y_pred = model(x)
list_of_time_outs_x.append(y_pred["x"]["time_out"].detach().cpu())
list_of_time_outs_x4.append(y_pred["x4"]["time_out"].detach().cpu())
list_of_time_outs_x8.append(y_pred["x8"]["time_out"].detach().cpu())
list_of_time_outs_x16.append(y_pred["x16"]["time_out"].detach().cpu())
list_of_time_outs_x32.append(y_pred["x32"]["time_out"].detach().cpu())
list_of_x = []
list_of_time_outs_x = torch.vstack(list_of_time_outs_x)
list_of_time_outs_x4 = torch.vstack(list_of_time_outs_x4)
list_of_time_outs_x8 = torch.vstack(list_of_time_outs_x8)
list_of_time_outs_x16 = torch.vstack(list_of_time_outs_x16)
list_of_time_outs_x32 = torch.vstack(list_of_time_outs_x32)
dict_results[item_name] = {
"x": list_of_time_outs_x,
"x4": list_of_time_outs_x4,
"x8": list_of_time_outs_x8,
"x16": list_of_time_outs_x16,
"x32": list_of_time_outs_x32
}
with open(f"{save_dir}/{split}/{save_folder}/dict_results.pkl", "wb") as handle:
pickle.dump(dict_results, handle, protocol=4)