-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
answer_92.py
69 lines (51 loc) · 1.49 KB
/
answer_92.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import numpy as np
import matplotlib.pyplot as plt
from glob import glob
def k_means(img, Class=5):
# get shape
H, W, C = img.shape
# initiate random seed
np.random.seed(0)
# reshape image
img = np.reshape(img, (H * W, -1))
# get index randomly
i = np.random.choice(np.arange(H * W), Class, replace=False)
Cs = img[i].copy()
while True:
# prepare pixel class label
clss = np.zeros((H * W), dtype=int)
# each pixel
for i in range(H * W):
# get distance from index pixel
dis = np.sqrt(np.sum((Cs - img[i])**2, axis=1))
# get argmin distance
clss[i] = np.argmin(dis)
# selected pixel values
Cs_tmp = np.zeros((Class, 3))
# each class label
for i in range(Class):
Cs_tmp[i] = np.mean(img[clss == i], axis=0)
# if not any change
if (Cs == Cs_tmp).all():
break
else:
Cs = Cs_tmp.copy()
# prepare out image
out = np.zeros((H * W, 3), dtype=np.float32)
# assign selected pixel values
for i in range(Class):
out[clss == i] = Cs[i]
print(Cs)
out = np.clip(out, 0, 255)
# reshape out image
out = np.reshape(out, (H, W, 3))
out = out.astype(np.uint8)
return out
# read image
img = cv2.imread("imori.jpg").astype(np.float32)
# K-means
out = k_means(img)
cv2.imwrite("out.jpg", out)
cv2.imshow("result", out)
cv2.waitKey(0)