-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFeature_vectors_generation.py
300 lines (213 loc) · 8.97 KB
/
Feature_vectors_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: Michael (S. Cai)
"""
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset, DataLoader
from SiamFCANet import SiamFCANet18_CVUSA, SiamFCANet34_CVUSA
from input_data import InputData
import numpy as np
import skimage
from skimage import io, transform
import cv2
import os
from PIL import Image
import random
from numpy.random import randint as randint
from numpy.random import uniform as uniform
### in python2 list type data need copy.copy() method to realize .copy() as in numpy array
import copy
########################
torch.backends.cudnn.benchmark = True # use cudnn
########################
# scan the files
def GetFileList(FindPath, FlagStr=[]):
import os
FileList = []
FileNames = os.listdir(FindPath)
if len(FileNames) > 0:
for fn in FileNames:
if len(FlagStr) > 0:
if IsSubString(FlagStr, fn):
fullfilename = os.path.join(FindPath, fn)
FileList.append(fullfilename)
else:
fullfilename = os.path.join(FindPath, fn)
FileList.append(fullfilename)
if len(FileList) > 0:
FileList.sort()
return FileList
def IsSubString(SubStrList, Str):
flag = True
for substr in SubStrList:
if not (substr in Str):
flag = False
return flag
################# triplet data preparing ####################
class Triplet_ImageData(Dataset):
###label_list 0 1 A means Anchor and P means positive
def __init__(self, root_path, grd_list, sat_list):
self.image_names_grd = grd_list
self.image_names_sat = sat_list
self.up_root = root_path
######
def __len__(self):
return len(self.image_names_grd)
def __getitem__(self, idx):
### for anchor
data_names_grd = os.path.join(self.up_root, self.image_names_grd[idx])
image_grd = Image.open(data_names_grd)
### adjust with torchvision
trans_img_G = transforms.ToTensor()(image_grd)
# torchvision is R G B and opencv is B G R
trans_img_G[0] = trans_img_G[0]*255.0 - 123.6 # Red
trans_img_G[1] = trans_img_G[1]*255.0 - 116.779 # Green
trans_img_G[2] = trans_img_G[2]*255.0 - 103.939 # Blue
######################################
###### for positive this is the most technical part for feeding data
data_names_sat = os.path.join(self.up_root, self.image_names_sat[idx])
image_sat = Image.open(data_names_sat)
## randomly create an angle
#angle = np.random.randint(-180,180) # full rotate
angle = np.random.randint(0, 4) * 90 # 4 angle view with interval=90
rand_crop = random.randint(1, 748)
if rand_crop > 512:
start = int((750 - rand_crop) / 2)
box=(start,start,start + rand_crop,start + rand_crop)
image_sat = image_sat.crop(box)
trans_img_S = transforms.Resize([512,512], interpolation=Image.ANTIALIAS)(image_sat)
trans_img_S = trans_img_S.rotate(angle, resample=Image.BICUBIC)
trans_img_S = transforms.ToTensor()(trans_img_S)
trans_img_S[0] = trans_img_S[0]*255.0
trans_img_S[1] = trans_img_S[1]*255.0
trans_img_S[2] = trans_img_S[2]*255.0
### adjust with skimage
## needs to be changed into float64 and also change the turns of axis
## to pass the Perspective transformation, initially
trans_img_S[0] = trans_img_S[0] - 123.6 # Red
trans_img_S[1] = trans_img_S[1] - 116.779 # Green
trans_img_S[2] = trans_img_S[2] - 103.939 # Blue
### angle vector
angle2radian = (np.pi/180.0)
### np.sin and np.cos are base on radian rather than angle
### use the pair of sin and cos is because sin and cos couple can determine an certain angle
angle_tensor = torch.Tensor([np.sin(angle*angle2radian), np.cos(angle*angle2radian)])
########################################
return trans_img_G, trans_img_S, angle_tensor, angle
########################
##### for testing #####
class ImageDataForExam(Dataset):
###label_list 0 1 A means Anchor and P means positive
def __init__(self, grd_list, sat_list):
self.image_names_grd = grd_list
self.image_names_sat = sat_list
######
def __len__(self):
return len(self.image_names_grd)
def __getitem__(self, idx):
### for query data
data_names_grd = os.path.join('', self.image_names_grd[idx])
image_grd = Image.open(data_names_grd)
### adjust with torchvision
trans_img_G = transforms.ToTensor()(image_grd)
# torchvision is R G B and opencv is B G R
trans_img_G[0] = trans_img_G[0]*255.0 - 123.6 # Red
trans_img_G[1] = trans_img_G[1]*255.0 - 116.779 # Green
trans_img_G[2] = trans_img_G[2]*255.0 - 103.939 # Blue
######################################
###### for examing data
data_names_sat = os.path.join('', self.image_names_sat[idx])
image_sat = Image.open(data_names_sat)
### adjust with torchvisison
trans_img_S = transforms.Resize([512,512], interpolation=Image.ANTIALIAS)(image_sat)
trans_img_S = transforms.ToTensor()(trans_img_S)
trans_img_S[0] = trans_img_S[0]*255.0 - 123.6 # Red
trans_img_S[1] = trans_img_S[1]*255.0 - 116.779 # Green
trans_img_S[2] = trans_img_S[2]*255.0 - 103.939 # Blue
########################################
return trans_img_G, trans_img_S
#################
### load data
data = InputData()
trainList = data.id_list
trainIdxList = data.id_idx_list
testList = data.id_test_list
testIdxList = data.id_test_idx_list
#######################
up_root = 'dataset/'
### vectors restoring path
save_path = 'vectors/'
###########################
mini_batch = 8
########################### Feature Extraction ############################
### feature vectors generation
def FeatVecGen(net_test, model_name):
### net evaluation state
net_test.eval()
filenames_query = []
filenames_examing = []
for rawTestList in testList:
info_query = up_root + rawTestList[1]
filenames_query.append(info_query)
info_examing = up_root + rawTestList[0]
filenames_examing.append(info_examing)
my_data = ImageDataForExam(filenames_query, filenames_examing)
mini_batch = 8
testloader = DataLoader(my_data, batch_size=mini_batch, shuffle=False, num_workers=8)
N_data = len(filenames_query)
vec_len = 1024
### N_data % mini_batch
nail = N_data % mini_batch
### N_data // mini_batch
max_i = N_data // mini_batch
### creat a space for restoring features
query_vec = np.zeros([N_data,vec_len], dtype=np.float32)
examing_vec = np.zeros([N_data,vec_len], dtype=np.float32)
### feature extraction
for i, data in enumerate(testloader, 0):
data_query, data_examing = data
data_query, data_examing = Variable(data_query).cuda(), Variable(data_examing).cuda()
outputs_query, _ = net_test.forward_SV(data_query)
outputs_examing, _ = net_test.forward_OH(data_examing)
###### feature vectors feeding
if(i<max_i):
m = mini_batch*i
n = mini_batch*(i+1)
query_vec[m:n] = outputs_query.data.cpu().numpy()
examing_vec[m:n] = outputs_examing.data.cpu().numpy()
else:
m = mini_batch*i
n = mini_batch*i + nail
query_vec[m:n] = outputs_query.data.cpu().numpy()
examing_vec[m:n] = outputs_examing.data.cpu().numpy()
if(i % 8 == 0):
print(i)
path = 'vectors/'
np.save(path + model_name + '_query.npy', query_vec)
np.save(path + model_name + '_ref.npy', examing_vec)
print('vec produce done')
##########################
### Siam-FCANet 18 ###
model_name = 'SFCANet18'
net = SiamFCANet18_CVUSA()
net.cuda()
weight_path = 'weights/FCANET18/'
net.load_state_dict(torch.load(weight_path+'SFCANet_18.pth'))
FeatVecGen(net, model_name)
###
### Siam-FCANet 34 ###
"""
model_name = 'SFCANet34'
net = SiamFCANet34_CVUSA()
net.cuda()
weight_path = 'weights/FCANET34/'
net.load_state_dict(torch.load(weight_path+'SFCANet_34.pth'))
FeatVecGen(net, model_name)
"""
###