-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_ctc.py
167 lines (131 loc) · 6.15 KB
/
train_ctc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import numpy as np
from glob import glob
from skimage.io import imread,imsave
#from tifffile import imread,imsave
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import backend as K
from tensorflow.keras.models import load_model
import pdb
class cell_data(keras.utils.Sequence):
def __init__(self,input_path,gt_path):
#self.batch_size = batch_size
#self.img_size = img_size
self.input_path = input_path
self.gt_path = os.path.join(gt_path,'TRA')
#self.all_gts = os.listdir(self.gt_path)
def __len__(self):
return len(os.listdir(self.gt_path))-1
def __getitem__(self,idx):
gt_file = "man_track"+format(idx,'03d')+'.tif'
#gt_file_noext,_ = os.path.splitext(gt_file)
#gt_file_tmp = gt_file.split('_')
#time = gt_file_tmp[2]
#z_slice = gt_file_tmp[3]
#print (gt_file)
#pdb.set_trace()
gt = imread(os.path.join(self.gt_path,gt_file))
gt_b = np.where(gt>0,1,0)
img_file = 't'+format(idx,'03d')+'.tif'
img = imread(os.path.join(self.input_path,img_file))
img = img/2**8
img_new = np.zeros((32,512,512))
img_new[0:30] = img
gt_b_new = np.zeros((32,512,512))
gt_b_new[0:30] = gt
img_new = np.expand_dims(img_new,3)
gt_b_new = np.expand_dims(gt_b_new,3)
img_new = img_new[None,:,:,:,:]
gt_b_new = gt_b_new[None,:,:,:,:]
#img_slice = img[int(z_slice)]
return img_new,gt_b_new
def get_model(img_size):
num_classes = 1
inputs = keras.Input(shape = img_size)
conv1 = layers.Conv3D(8,3,activation='relu',padding="same",data_format="channels_last")(inputs)
conv1 = layers.Conv3D(8,3,activation='relu',padding="same")(conv1)
pool1 = layers.MaxPooling3D(pool_size=(2,2,2))(conv1)
conv2 = layers.Conv3D(16,3,activation='relu',padding="same")(pool1)
pool2 = layers.MaxPooling3D(pool_size=(2,2,2))(conv2)
conv3 = layers.Conv3D(32,3,activation='relu',padding="same")(pool2)
pool3 = layers.MaxPooling3D(pool_size=(2,2,2))(conv3)
conv4 = layers.Conv3D(64,3,activation='relu',padding="same")(pool3)
pool4 = layers.MaxPooling3D(pool_size=(2,2,2))(conv4)
conv5 = layers.Conv3D(128,3,activation='relu',padding="same")(pool4)
conv5 = layers.Conv3D(128,3,activation='relu',padding="same")(conv5)
up6 = layers.Conv3D(64,2,activation='relu',padding="same")(layers.UpSampling3D(2)(conv5))
merge6 = layers.concatenate([conv4,up6],axis=-1)
conv6 = layers.Conv3D(64,3,activation='relu',padding="same")(merge6)
conv6 = layers.Conv3D(64,3,activation='relu',padding="same")(conv6)
up7 = layers.Conv3D(32,2,activation='relu',padding="same")(layers.UpSampling3D(2)(conv6))
merge7 = layers.concatenate([conv3,up7],axis=-1)
conv7 = layers.Conv3D(32,3,activation='relu',padding="same")(merge7)
conv7 = layers.Conv3D(32,3,activation='relu',padding="same")(conv7)
up8 = layers.Conv3D(16,2,activation='relu',padding="same")(layers.UpSampling3D(2)(conv7))
merge8 = layers.concatenate([conv2,up8],axis=-1)
conv8 = layers.Conv3D(16,3,activation='relu',padding="same")(merge8)
conv8 = layers.Conv3D(16,3,activation='relu',padding="same")(conv8)
up9 = layers.Conv3D(8,2,activation='relu',padding="same")(layers.UpSampling3D(2)(conv8))
merge9 = layers.concatenate([conv1,up9],axis=-1)
conv9 = layers.Conv3D(8,3,activation='relu',padding="same")(merge9)
conv9 = layers.Conv3D(8,3,activation='relu',padding="same")(conv9)
'''
#Downsampling
for filters in [8,16,32]:
x = layers.Activation("relu")(x)
x = layers.Conv3D(filters,3,padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.Conv3D(filters,3,padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.MaxPooling3D(3,strides=2,padding="same")(x)
residual = layers.Conv3D(filters,1,strides=2,padding="same")(previous_block)
x = layers.add([x,residual])
previous_block = x
#Upsampling
for filters in [32,16,8,4]:
x = layers.Activation("relu")(x)
x = layers.Conv3DTranspose(filters,3,padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.Conv3DTranspose(filters,3,padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.UpSampling3D(2)(x)
residual = layers.UpSampling3D(4)(previous_block)
residual = layers.Conv3D(filters,1,strides=2,padding="same")(residual)
x = layers.add([x,residual])
previous_block = x
'''
outputs = layers.Conv3D(num_classes,1,activation="sigmoid")(conv9)
model = keras.Model(inputs,outputs)
return model
def dice_coef(y_true,y_pred,smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(K.abs(y_true*y_pred))
return (2*intersection+smooth)/(K.sum(y_true_f)+K.sum(y_pred_f)+smooth)
def dice_loss(y_true,y_pred):
return 1-dice_coef(y_true,y_pred)
def train():
keras.backend.clear_session()
#model = get_model(img_size)
#change input and gt pathmode
train_gen = cell_data('/home/tom/ctc_train/Fluo-C3DL-MDA231/01','/home/tom/ctc_train/Fluo-C3DL-MDA231/01_GT')
model = get_model((32,512,512,1))
model.compile(optimizer="adam",loss=dice_loss,metrics=[dice_coef])
callbacks = [keras.callbacks.ModelCheckpoint("ctc_train/center_cell.h5",save_best_only=True)]
epochs = 100
model.fit(train_gen,epochs=epochs,validation_data=train_gen,callbacks = callbacks)
def model_pred():
model_center = load_model("ctc_train/center_cell.h5",compile=False)
for img_file in os.listdir('/home/tom/ctc_train/Fluo-C3DL-MDA231/02'):
img = imread(os.path.join('/home/tom/ctc_train/Fluo-C3DL-MDA231/02',img_file))
img_new = np.zeros((32,512,512))
img_new[0:30]=img
img_inputs = np.expand_dims(img_new,3)
img_inputs = np.expand_dims(img_inputs,0)
output = model_center.predict(img_inputs)
imsave(os.path.join('/home/tom/ctc_train/MDA231_test/',img_file),output)
#train()
model_pred()