Skip to content

Latest commit

 

History

History

DL-Keras_Tensorflow

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deep Learning

All lessons in this folder are in Keras (mainly) and Tensorflow.

Contents

Intro

  1. Lesson 0: Introduction to regression.
  2. Lesson 1: Penalising weights to fit better (scikit learn intro)

Mathematics (optional)

  1. Lesson 2: Gradient Descent. Using basic optimisation methods.
  2. Lesson 3: Tensorflow intro: zero layer hidden networks (i.e. normal regression).
  3. Lesson 4: Tensorflow hidden layer introduction.

Intermediate

  1. Lesson 5: Using Keras to simplify multi layer neural nets.
  2. Lesson 6: Embeddings to deal with categorical data. (Keras)
  3. Lesson 7: Word2Vec. Embeddings to visualise words. (Tensorflow)
  4. Lesson 8: Application - Bike Sharing predictions
  5. Lesson 9: Choosing Number of Layers and more
  6. Lesson 10: XGBoost - A quick detour from Deep Learning
  7. Lesson 11: Convolutional Neural Nets (MNIST dataset)
  8. Lesson 12: CNNs and BatchNormalisation (CIFAR10 dataset)
  9. Lesson 13: Transfer Learning (Dogs vs Cats dataset)

Novice

  1. Lesson 14: LSTMs - Sentiment analysis.
  2. Lesson 15: LSTMs - Shakespeare.
  3. Lesson 16: LSTMs - Trump Tweets.
  4. Lesson 17: Trump - Stacking and Stateful LSTMs.
  5. Lesson 18: Fake News Classifier

Advanced

  1. Lesson 19: Sequence to Sequence
  2. Lesson 20: Deep Q Learning
  3. Lesson 21: Generative Adversarial Networks