-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
235 lines (183 loc) · 8.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
import torchvision.datasets as datasets
import torchvision.models as models
import torch.utils.data as data
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
import sys
import os
import numpy as np
from sklearn.manifold import TSNE
from sklearn.metrics import confusion_matrix
from visualize import Dashboard
from settings import get_arguments
from avg import AverageMeter
def load_data(datadir, crop_size, batch_size, num_workers):
# -- prepare data ---#
data_transfrom = {
'train': transforms.Compose([transforms.RandomCrop(crop_size),
transforms.RandomHorizontalFlip(),
#transforms.RandomVerticalFlip(),
#transforms.ColorJitter(),
transforms.ToTensor()]),
'val': transforms.Compose([transforms.CenterCrop(crop_size),
transforms.ToTensor()])}
dsets = {x: datasets.ImageFolder(os.path.join(datadir, x), transform=data_transfrom[x])
for x in ['train', 'val']}
data_loader = {x: data.DataLoader(dsets[x], batch_size=batch_size, shuffle=True, num_workers=num_workers)
for x in ['train', 'val']}
return data_loader
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def compute_confusion_matrix(model, args):
data_loader = load_data(args.datadir, args.crop_size, args.batch_size, args.num_workers)
new_model = nn.Sequential(*list(model.children())[:-1])
dashboard = Dashboard()
T = np.empty((0))
Y = np.empty((0))
#
for i, (images, targets) in enumerate(data_loader['train']):
images = Variable(images.float().cuda(), volatile=True)
targets = Variable(targets.long().cuda(), volatile=True)
outputs = model(images)
_, pred = outputs.topk(1, 1, True, True)
pred = pred.t()
T = np.hstack((T, targets.data.cpu().numpy()))
Y = np.hstack((Y, pred.data.cpu().numpy().squeeze()))
conf_mat = confusion_matrix(T, Y)
dashboard.plot_conf_matr(conf_mat)
def extract_features(model, args):
data_loader = load_data(args.datadir, args.crop_size, args.batch_size, args.num_workers)
new_model = nn.Sequential(*list(model.children())[:-1])
dashboard = Dashboard()
Y = np.empty((0))
X = np.empty((0, 1024))
#
for i, (images, targets) in enumerate(data_loader['train']):
images = Variable(images.float().cuda(), volatile=True)
targets = Variable(targets.long().cuda(), volatile=True)
outputs = new_model(images)
outputs = F.avg_pool2d(outputs, kernel_size=7)
X = np.vstack((X, outputs.data.cpu().numpy().squeeze()))
Y = np.hstack((Y, targets.data.cpu().numpy()))
# X = np.load('train.npy')
# Y = X[:,0]
# X = X[:, 1:]
# X = np.nan_to_num(X)
#---compute tsne rep. and plot them---
X, Y = tsne(X, Y)
dashboard.plot_tsne(X, Y)
def tsne(X, Y):
X_embedded = TSNE(n_components=2).fit_transform(X,y=Y)
return X_embedded, Y
def main(model, args, base_parameters=None):
#--- load data ---
data_loader = load_data(args.datadir, args.crop_size, args.batch_size, args.num_workers)
#--- define training settings ---
if base_parameters is not None:
optimizer = optim.SGD([
{'params': base_parameters},
{'params': model.classifier.parameters(), 'lr': args.lr}
], lr=args.lr*0.1, momentum=0.9, weight_decay=args.weight_decay)
else:
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss().cuda()
losses = {x: AverageMeter() for x in ['train', 'val']}
best_top1 = 0.0
best_top5 = 0.0
for epoch in range(1, args.num_epochs+1):
#---in each epoch, do a train and a validation step---
for phase in ['train', 'val']:
if phase =='train':
model.train()
else:
model.eval()
top1s = AverageMeter()
top5s = AverageMeter()
losses[phase].reset()
for i, (image, target) in enumerate(data_loader[phase]):
images = Variable(image.float().cuda())
labels = Variable(target.long().cuda())
outputs = model(images)
loss = criterion(outputs, labels)
losses[phase].update(loss.data.cpu().numpy(), args.batch_size)
if phase== 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
else:
prec1, prec5 = accuracy(outputs.data, labels.data, topk=(1,5))
top1s.update(prec1[0], args.batch_size)
top5s.update(prec5[0], args.batch_size)
if top1s.avg > best_top1:
best_top1 = top1s.avg
best_top5 = top5s.avg
filename = "weights/{0}-best.pth.tar".format(args.model)
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'best_top1': best_top1,
'optimizer': optimizer.state_dict(),
}
torch.save(state, filename)
if epoch % args.log_step == 0:
filename = "weights/{0}-{1:02}.pth.tar".format(args.model, epoch)
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'best_top1': best_top1,
'optimizer': optimizer.state_dict(),
}
torch.save(state, filename)
print('Epoch:{0}/{1}'
'\tTrainLoss: {2:.4f}'
'\tTestLoss: {3:.4f}'
'\tBestTop1: {4:.4f}'
'\tBestTop5: {5:.4f}'.format(epoch, args.num_epochs, losses['train'].avg, losses['val'].avg, best_top1, best_top5))
if __name__ == '__main__':
args = get_arguments(sys.argv[1:])
if args.model == 'alexnet':
model = models.alexnet(pretrained=True)
model.classifier._modules['6'] = nn.Linear(4096, 10)
ignored_params = list(map(id, model.classifier.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
model = model.cuda()
elif args.model == 'vgg':
model = models.vgg19(pretrained=True)
model.classifier._modules['6'] = nn.Linear(4096, 10)
#---we will use larger lr for fully connected layers---
ignored_params = list(map(id, model.classifier.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
model = model.cuda()
elif args.model == 'resnet':
model = models.resnet50(pretrained=True)
model.fc = nn.Linear(2048, 10)
ignored_params = list(map(id, model.fc.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
model = model.cuda()
elif args.model == 'densenet':
model = models.densenet121(pretrained=True)
model.classifier = nn.Linear(1024, 10)
ignored_params = list(map(id, model.classifier.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
checkpoint = torch.load('weights/bests/densenet-best.pth.tar')
model.load_state_dict(checkpoint['state_dict'])
model = model.cuda()
#---Parallel training on several GPUs---
#model = nn.DataParallel(model, device_ids=[0,1]).cuda()
#main(model, args, base_params)
# extract_features(model, args)
compute_confusion_matrix(model, args)