-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoutlier_exposure.py
executable file
·242 lines (198 loc) · 10.2 KB
/
outlier_exposure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""
Outlier Exposure algorithm integrated with OD-test benchmark.
Origin url: https://github.com/hendrycks/outlier-exposure
"""
from __future__ import print_function
import time
import numpy as np
import tqdm
import global_vars as Global
from datasets import MirroredDataset
from utils.iterative_trainer import IterativeTrainerConfig
from utils.logger import Logger
from termcolor import colored
from torch.utils.data.dataloader import DataLoader
import torch
import os
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score, auc, precision_recall_curve
from methods import AbstractMethodInterface
class OutlierExposure(AbstractMethodInterface):
def __init__(self, args):
super(OutlierExposure, self).__init__()
self.base_model = None
self.args = args
self.default_model = 0
self.add_identifier = ""
self.known_loader = None
self.unknown_loader = None
self.train_loader = None
self.train_dataset_name = ""
self.valid_dataset_name = ""
self.seed = 1
self.model_name = ""
self.workspace_dir = "workspace/outlier_exposure"
def propose_H(self, dataset, mirror=True):
config = self.get_H_config(dataset, mirror)
from models import get_ref_model_path
h_path = get_ref_model_path(self.args, config.model.__class__.__name__, dataset.name)
self.best_h_path = os.path.join(h_path, 'model.best.pth')
# trainer = IterativeTrainer(config, self.args)
if not os.path.isfile(self.best_h_path):
raise NotImplementedError("Please use model_setup to pretrain the networks first!")
else:
print(colored('Loading H1 model from %s' % self.best_h_path, 'red'))
config.model.load_state_dict(torch.load(self.best_h_path))
self.base_model = config.model
self.base_model.eval()
self.add_identifier = self.base_model.__class__.__name__
self.train_dataset_name = dataset.name
self.model_name = "VGG" if self.add_identifier.find("VGG") >= 0 else "Resnet"
if hasattr(self.base_model, 'preferred_name'):
self.add_identifier = self.base_model.preferred_name()
def method_identifier(self):
output = "OutlierExposure"
if len(self.add_identifier) > 0:
output = output + "/" + self.add_identifier
return output
def get_H_config(self, dataset, mirror):
if self.args.D1 in Global.mirror_augment and mirror:
print(colored("Mirror augmenting %s" % self.args.D1, 'green'))
new_train_ds = dataset + MirroredDataset(dataset)
dataset = new_train_ds
self.train_loader = DataLoader(dataset, batch_size=self.args.batch_size, num_workers=self.args.workers,
pin_memory=True, shuffle=True)
# Set up the model
model = Global.get_ref_classifier(self.args.D1)[self.default_model]().to(self.args.device)
# model.forward()
# Set up the config
config = IterativeTrainerConfig()
base_model_name = self.base_model.__class__.__name__
if hasattr(self.base_model, 'preferred_name'):
base_model_name = self.base_model.preferred_name()
config.name = '_%s[%s](%s->%s)' % (self.__class__.__name__, base_model_name, self.args.D1, self.args.D2)
config.train_loader = self.train_loader
config.model = model
config.logger = Logger()
return config
def train_H(self, dataset):
self.known_loader = DataLoader(dataset.datasets[0], batch_size=self.args.batch_size, shuffle=True,
num_workers=self.args.workers,
pin_memory=True)
self.unknown_loader = DataLoader(dataset.datasets[1], batch_size=self.args.batch_size, shuffle=False,
num_workers=self.args.workers,
pin_memory=True)
self.valid_dataset_name = dataset.datasets[1].name
self.valid_dataset_length = len(dataset.datasets[0])
epochs = 10
self._fine_tune_model(epochs=epochs)
return self._find_threshold()
def _cosine_annealing(self, step, total_steps, lr_max, lr_min):
return lr_min + (lr_max - lr_min) * 0.5 * (
1 + np.cos(step / total_steps * np.pi))
def _fine_tune_model(self, epochs):
model_path = os.path.join(os.path.join(self.workspace_dir,
self.train_dataset_name + '_' + self.valid_dataset_name + '_' + self.model_name + '_s' + str(
self.seed) + '_epoch_' + str(epochs - 1) + '.pt'))
if os.path.exists(model_path):
self.base_model.load_state_dict(torch.load(model_path))
return
if not os.path.exists(self.workspace_dir):
os.makedirs(self.workspace_dir)
if not os.path.isdir(self.workspace_dir):
raise Exception('%s is not a dir' % self.workspace_dir)
torch.manual_seed(self.seed)
np.random.seed(self.seed)
with open(os.path.join(self.workspace_dir,
self.train_dataset_name + '_' + self.valid_dataset_name + '_' + self.model_name + '_s' + str(
self.seed) + '_training_results.csv'), 'w') as f:
f.write('epoch,time(s),train_loss,test_loss,test_error(%)\n')
print('Beginning Training\n')
self.optimizer = torch.optim.SGD(
self.base_model.parameters(), 0.001, momentum=0.9,
weight_decay=0.0005, nesterov=True)
self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer,
lr_lambda=lambda step: self._cosine_annealing(step,
10 * self.valid_dataset_length,
1,
1e-6 / 0.001))
# Main loop
for epoch in range(0, epochs):
self.epoch = epoch
begin_epoch = time.time()
self._train_epoch()
self._eval_model()
# Save model
torch.save(self.base_model.state_dict(),
os.path.join(os.path.join(self.workspace_dir,
self.train_dataset_name + '_' + self.valid_dataset_name + '_' + self.model_name + '_s' + str(
self.seed) + '_epoch_' + str(epoch) + '.pt')))
# Let us not waste space and delete the previous model
prev_path = os.path.join(os.path.join(self.workspace_dir,
self.train_dataset_name + '_' + self.valid_dataset_name + '_' + self.model_name + '_s' + str(
self.seed) + '_epoch_' + str(epoch - 1) + '.pt'))
if os.path.exists(prev_path): os.remove(prev_path)
# Show results
with open(
os.path.join(self.workspace_dir,
self.train_dataset_name + '_' + self.valid_dataset_name + '_' + self.model_name + '_s' + str(
self.seed) + '_training_results.csv'), 'a') as f:
f.write('%03d,%05d,%0.6f,%0.5f,%0.2f\n' % (
(epoch + 1),
time.time() - begin_epoch,
self._train_loss,
self._test_loss,
100 - 100. * self._test_accuracy,
))
# # print state with rounded decimals
# print({k: round(v, 4) if isinstance(v, float) else v for k, v in state.items()})
print('Epoch {0:3d} | Time {1:5d} | Train Loss {2:.4f} | Test Loss {3:.3f} | Test Error {4:.2f}'.format(
(epoch + 1),
int(time.time() - begin_epoch),
self._train_loss,
self._test_loss,
100 - 100. * self._test_accuracy,
))
def _train_epoch(self):
self.base_model.train() # enter train mode
loss_avg = 0.0
# start at a random point of the outlier dataset; this induces more randomness without obliterating locality
self.unknown_loader.dataset.offset = np.random.randint(self.valid_dataset_length)
for in_set, out_set in zip(self.train_loader, self.unknown_loader):
data = torch.cat((in_set[0], out_set[0]), 0)
target = in_set[1]
data, target = data.cuda(), target.cuda()
# forward
x = self.base_model(data, softmax=False)
# backward
self.scheduler.step()
self.optimizer.zero_grad()
loss = F.cross_entropy(x[:len(in_set[0])], target)
# cross-entropy from softmax distribution to uniform distribution
loss += 0.5 * -(x[len(in_set[0]):].mean(1) - torch.logsumexp(x[len(in_set[0]):], dim=1)).mean()
loss.backward()
self.optimizer.step()
# exponential moving average
loss_avg = loss_avg * 0.8 + float(loss) * 0.2
self._train_loss = loss_avg
def _eval_model(self):
self.base_model.eval()
loss_avg = 0.0
correct = 0
with torch.no_grad():
for data, target in self.train_loader:
data, target = data.cuda(), target.cuda()
# forward
output = self.base_model(data, softmax=False)
loss = F.cross_entropy(output, target)
# accuracy
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum().item()
# test loss average
loss_avg += float(loss.data)
self._test_loss = loss_avg / len(self.train_loader.dataset)
self._test_accuracy = correct / len(self.train_loader.dataset)
def get_ood_score(self, input):
logits = self.base_model(input, softmax=False)
smax = F.softmax(logits, dim=1).cpu().numpy()
return -np.max(smax, axis=1)