-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
stable_diffusion_animation_pipeline.py
177 lines (152 loc) · 6.22 KB
/
stable_diffusion_animation_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -------------------------------------------------------------------------------
# This code is copied from
# https://github.com/andreasjansson/cog-stable-diffusion/blob/animate/animate.py
# -------------------------------------------------------------------------------
from typing import List, Optional, Union, Tuple
import numpy as np
from PIL import Image
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
import torch
class StableDiffusionAnimationPipeline(DiffusionPipeline):
"""
From https://github.com/huggingface/diffusers/pull/241
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: PNDMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
# scheduler = scheduler.set_format("pt")
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
width: int,
height: int,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
generator: Optional[torch.Generator] = None,
) -> Image:
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
text_embeddings = self.embed_text(
prompt, do_classifier_free_guidance, batch_size
)
t_start = offset
### denoise!
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents)
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
# run safety checker
safety_cheker_input = self.feature_extractor(
self.numpy_to_pil(image), return_tensors="pt"
).to(self.device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_cheker_input.pixel_values
)
image = self.numpy_to_pil(image)
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
@torch.inference_mode()
@torch.cuda.amp.autocast()
def denoise(self, latents, text_embeddings, t_start, t_end, guidance_scale):
do_classifier_free_guidance = guidance_scale > 1.0
for i, t in enumerate(self.scheduler.timesteps[t_start:t_end]):
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latents = self.scheduler.step(noise_pred, t, latents)["prev_sample"]
return latents
def embed_text(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool,
batch_size: int,
) -> torch.FloatTensor:
# get prompt text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(self.device)
)[0]
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def latents_to_image(self, latents):
latents = 1 / 0.18215 * latents
# --------------------------------------------------------------
# NOTE: ONLY BUG FIX. "sample" was missing in the original code
# --------------------------------------------------------------
image = self.vae.decode(latents)["sample"]
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return image
def safety_check(self, image):
safety_cheker_input = self.feature_extractor(
self.numpy_to_pil(image), return_tensors="pt"
).to(self.device)
_, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_cheker_input.pixel_values
)
if has_nsfw_concept[0]:
raise Exception("NSFW content detected, please try a different prompt and/or seed")