A project to generate synthetic dataset with realistic city backgrounds for image segmentation problems.
@INPROCEEDINGS{sahibindensiu2022,
author={İşlek, İrem and Aksaylı, N. Deniz and Güngör, Onur and Karaman, Çağla Çığ},
booktitle={2022 30th Signal Processing and Communications Applications Conference (SIU)},
title={Generating Synthetic Image Segmentation Dataset Using Realistic City Backgrounds},
year={2022}
}
pipenv install -r requirements.txt
Note: This step is needed if you want to generate background images from a mp4 video.
Please define the source video path for background images and the folder name
for output background images using the dataset_generator_parameters.ini file.
pipenv run python background_images_generator.py
Note: This step is needed if you want to use the pedestrian objects from the PennFudan Dataset.
Otherwise assign the related path of your objects/masks dataset to the "segmentation_object_image_folder"
and "segmentation_object_mask_folder" variables in the dataset_generator_parameters.ini file.
pipenv run python PennFudan_mask_generator.py
Note: This step merges background images with the object images and related image masks to generate a synthetic segmentation dataset.
Please check synthetic_segmentation_dataset_generator_params from the dataset_generator_parameters.ini file
to customize your synthetic dataset.
pipenv run python synthetic_segmentation_dataset_generator.py
These parameters can be changed from dataset_generator_parameters.ini file
frame_delay: determines the delay of taking frames from the background video (in seconds)
mask_image_reuse_count: determines how many synthetic samples are created for each mask
object_min_height_threshold: determines a threshold for using objects which has min n pixel height
max_object_count_per_image: determines the maximum object count per image