-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDeterministic_Annealing.py
236 lines (222 loc) · 9.79 KB
/
Deterministic_Annealing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python
# coding: utf-8
import numpy as np
from matplotlib import pyplot as plt
import numpy.matlib as matlib
import pandas as pd
import warnings
from sklearn.preprocessing import normalize
from scipy.linalg import eigh
import plotly.express as px
import time
from scipy.spatial.distance import cdist
import random
def has_changed(x,y,tol=1e-3):
return np.linalg.norm(x-y)/np.linalg.norm(x)>tol
def has_stabled(x,y,tol=1e-3):
return np.linalg.norm(x-y)/np.linalg.norm(x)<tol
def divide (X, l):
out = np.copy(X)
np.divide(out, l, where = np.logical_not(np.isclose(l, 0)), out = out)
return out
def flatten(t):
'''
this finction is used for the purpose of flattening the Betas
and data points to be ploted in the animation
'''
return [item for sublist in t for item in sublist]
def bifurcate(D,x,y,p,px,py,purturb):
R=np.einsum('ij,ij->i',px*D,p)
i=np.argmax(R)
I=np.argpartition(p[i,:], kth=p.shape[1]//2, axis=-1)[p.shape[1]//2:]
direction=np.matmul(np.multiply(x[:,I],px[I]),p[i,I].T)
direction=purturb*np.sqrt(R[i])*direction/np.linalg.norm(direction)
u=y[:,i][:,None]+direction
# u=y[:,i][:,None]+(np.random.uniform(-purturb, purturb, size=y.shape))
py_d=py.copy()
py_d[i]=py_d[i]/2
return np.append(y,u[:,0].reshape(-1,1),axis=1),np.append(py_d,py_d[i]),1/(2*R[i])
class DA:
def __init__(self,K,tol=1e-4,max_iter=1000,alpha=1.05,
purturb=0.01,beta_final=None,verbos=0,normalize=False):
'''
K: number of clusters norm: the type of norm applied as the distance measure
tol: The relative tolerence applied as the stopping criteria
max_iter: maximum number of iterations applied as the stopping criteria
purturb: the magnitude of purturbation after each split
beta_final: the maximum value of beta before the algorithm stops. If None,
then it is detected automatically.
'''
self.K=K;self.tol=tol;self.max_iter=max_iter;
self.alpha=alpha;self.purturb=purturb;self.beta_final=beta_final
self.VERBOS=verbos;self.norm='l2';self.normalize=normalize
#___________________Fitting the model on data___________________
def fit(self,X,**kwargs):
'''
**kwargs:
px: data points probability array. If 'auto', it is calculated automatically.
'''
flag=False
m, self.n = np.shape(X)
self.d=m
l = np.sum(np.square(X), axis=0, keepdims=True);l_sqrt = np.sqrt(l);
weights=l[0]
weights=weights/weights.sum()
if self.normalize:
self.X = divide (X, l_sqrt)
else:
self.X=X;
if 'Px' in kwargs:
if kwargs['Px']=='auto':
self.Px=weights
flag=True
else:
self.Px=kwargs['Px']
else:
self.Px=np.array([1 for i in range(self.n)])/self.n
if not (flag == self.normalize):
print('!!--normalization without auto weighting on Px--!!')
self.Y=np.repeat((self.X@self.Px).reshape(m,1),1,axis=1)
self.Py=np.array([1]) #all the points belong to this cluster
def cluster(self,express=True):
y_list=[] # a list to save codevectors over betas
beta_list=[];Beta=0; # list of all betas
y_list.append(self.Y);beta_list.append(0)
k_n=1 # at first we just have one codevector
Y_old=np.random.rand(self.d,k_n*2)*1e6;P_old=np.random.rand(2,2);y_old=Y_old
beta_devide=[] #list to store critical betas
if not express:
Beta=0.45/np.max(np.cov(self.X))
changed=True;check_change=False
if self.VERBOS:
print(f'Classification started at Beta:{Beta}')
while True: #beta loop
counter=1
while True: #y p loop
D=cdist(self.X.T, self.Y.T, metric='sqeuclidean').T
Dn=np.subtract(D,np.min(D,axis=0))
if express:
P=np.float64(Dn==0)
self.Py=np.dot(P,self.Px)
Beta+=1
else:
beta_list.append(Beta)
delta=np.exp(-Dn*Beta)
counter2=1
while True:
p=(delta.T*self.Py).T
P=p/p.sum(axis=0)
self.Py=P@self.Px
if P.shape==P_old.shape:
if has_stabled(P_old,P,1e-3):
break
if counter>self.max_iter:
warnings.warn("MAX ITER REACHED: py LOOP")
break
P_old=P
counter2=counter2+1
self.Y=np.divide(np.matmul(np.multiply(self.X,self.Px),P.T),self.Py)
if self.Y.shape==Y_old.shape:
if has_stabled(Y_old,self.Y,self.tol):
break
if counter>self.max_iter:
warnings.warn("MAX ITER REACHED: Y LOOP")
break
Y_old=self.Y
counter=counter+1
if not express:
com=(np.count_nonzero(np.abs(P-1)==0)/self.n)
else:
com=1.0
beta_list.append(Beta)
y_list.append(self.Y)
if self.VERBOS:
cost=np.linalg.norm(self.X-(self.Y@P))/np.linalg.norm(self.X)
if (not (self.beta_final is None)) and Beta<1e100:
if Beta>self.beta_final and k_n==self.K:
print(f"Beta Max reached: {Beta} completeness:{com}")
Beta=1e100
else:
if (1.0-com)<1e-18 and k_n==self.K:
break
if self.VERBOS:
print(f'Beta: {Beta} cost:{cost}')
if express:
self.Y,self.Py,R=bifurcate(D,self.X,self.Y,P,self.Px,self.Py,self.purturb)
k_n=self.Y.shape[1]
beta_devide.append(R)
else:
if check_change:
changed=has_changed(y_old,self.Y,self.tol)
if changed:
check_change=False
stabled=has_stabled(y_old,self.Y,self.tol)
if not express:
Beta=Beta*self.alpha
if k_n<self.K:
if changed:
if stabled:
self.Y,self.Py,_=bifurcate(D,self.X,self.Y,P,self.Px,self.Py,self.purturb)
if self.VERBOS:
print(f"\nDevision occured: to {self.Y.shape[1]} at {Beta}\n")
k_n=self.Y.shape[1]
check_change=True
beta_devide.append(Beta)
y_old=self.Y
self.y_list=y_list
self.beta_list=beta_list
self.beta_devide=beta_devide
self.P=np.round(P)
return self.Y,self.P
def plot(self,size=(12,10)):
assert self.X.shape[0]==2,f'Can only plot 2-D data points, but the dimension here is {self.X.shape[0]}.'
plt.figure(figsize=size)
plt.scatter(self.X[0,:],self.X[1,:],marker='.',color='black')
plt.scatter(self.Y[0,:],self.Y[1,:],marker='*',c='red',linewidths=2)
def return_cost(self):
return np.linalg.norm(self.X-(self.Y@self.P),'fro')/np.linalg.norm(self.X,'fro')
def pie_chart(self,figsize=(6,8)):
labels=['Y_'+str(i) for i in range(self.Py.shape[0])]
explode=np.zeros_like(self.Py)
explode[np.argmin(self.Py)]=0.5
fig1, ax1 = plt.subplots(figsize=figsize)
ax1.pie(self.Py, explode=explode,labels=labels,autopct='%1.1f%%',
shadow=True, startangle=90)
ax1.axis('equal')
ax1.set_title("Cluster Masses %")
plt.show()
def animation(self):
xx=np.array(flatten([list(i[0,:]) for i in self.y_list]))
yy=np.array(flatten([list(i[1,:]) for i in self.y_list]))
l=len(xx)
Betas=[]
ids=[]
r=np.linalg.norm(self.Y)**0.2
for i , y in enumerate(self.y_list):
for j in range(y.shape[1]):
Betas.append(np.round(self.beta_list[i],2))
ids.append(int(j+1))
data={'$Y_x$':xx,'$Y_y$':yy,'Beta':Betas,'cluster number':ids}
df=pd.DataFrame(data=data)
fig=px.scatter(df,x='$Y_x$', y='$Y_y$',animation_frame='Beta',
log_x=False,title='Cluster Centers over beta Values',range_x=[np.min(xx)-r,np.max(xx)+r],
range_y=[np.min(yy)-r,np.max(yy)+r]
)
fig.show()
def mesh_plot(self,size=(12,10)):
plt.figure(figsize=size)
for i in range(self.K):
J=np.where(1-self.P[i,:]<=1e-5)
plt.scatter(self.X[0,J],self.X[1,J],color=np.random.rand(3))
def plot_criticals(self,log=False,size=(6,4)):
plt.figure(figsize=size)
if log:
plt.scatter(range(1,self.K),np.log(self.beta_devide));plt.grid();plt.xticks(np.arange(1, self.K, 1.0),color='black')
plt.ylabel('log('+r'$\beta_c$'+')',fontsize=18)
else:
plt.scatter(range(1,self.K),(self.beta_devide));plt.grid();plt.xticks(np.arange(1, self.K, 1.0))
plt.ylabel('Beta')
plt.title(r'Critical $\beta$s over number of features',fontsize=18)
plt.xlabel('Number of features',fontsize=18)
def return_true_number(self):
return np.argmax([(self.beta_devide[i+1]/self.beta_devide[i]) for i in range(len(self.beta_devide)-1)])