Skip to content

salman-lui/Robustness-in-SOTA-Computer-Vision-Models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Robustness in Computer Vision Models

Out-of-distribution Robustness Evaluation of SOTA Vision Models

Research project of Computer Vision - CSCI-GA.2271-001 Fall 20

Author

Md Salman Rahman(salman@nyu.edu) and Wonkwon Lee (wl2733@nyu.edu)

Summary

This research work provides a fair and in-depth out-of-distribution robustness comparison among 58 state-of-the-art computer vision model such as vision transformers, convolution, combination of convolution and attention, multi layer perceptron, sequence-based model, complementary search, and network-based model.

Abstract

The vision transformer (ViT) has advanced to the cutting edge in the visual recognition task. Transformers are more robust than CNN, according to the latest research. ViT’s self-attention mechanism, according to the claim, makes it more robust than CNN. Even with this, we discover that these conclusions are based on unfair experimental conditions and just comparing a few models, which did not allow us to depict the entire scenario of robustness performance. In this study, we investigate the performance of 58 state-ofthe-art computer vision models in a unified training setup based not only on attention and convolution mechanisms but also on neural networks based on a combination of convolution and attention mechanisms, sequence-based model, complementary search, and network-based method. Our research demonstrates that robustness depends on the training setup and model types, and performance varies based on out-of-distribution type. Our research will aid the community in better understanding and benchmarking the robustness of computer vision models.

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published