You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am assisting the data owner, Luc Guindon, with this data suggestion for the community data catalog. Thanks for your help and this incredible resource. Please let me know if I can help with writing an example script or any other documentation.
This data publication contains a set of 30m resolution raster files representing 2020 Canadian wall-to-wall maps of broad land cover type, forest canopy height, degree of crown closure and aboveground tree biomass, along with species composition of several major tree species. The Spatialized CAnadian National Forest Inventory data product (SCANFI) was developed using the newly updated National Forest Inventory photo-plot dataset, which consists of a regular sample grid of photo-interpreted high-resolution imagery covering all of Canada’s non-arctic landmass. SCANFI was produced using temporally harmonized summer and winter Landsat spectral imagery along with hundreds of tile-level regional models based on a novel k-nearest neighbours and random forest imputation method.
A full description of all methods and validation analyses can be found in Guindon et al. (2024). As the Arctic ecozones are outside NFI’s covered areas, the vegetation attributes in these regions were predicted using a single random forest model. The vegetation attributes in these arctic areas could not be rigorously validated. The raster file SCANFI_aux_arcticExtrapolationArea.tif identifies these zones.
SCANFI is not meant to replace nor ignore provincial inventories which could include better and more regularly updated inputs, training data and local knowledge. Instead, SCANFI was developed to provide a current, spatially-explicit estimate of forest attributes, using a consistent data source and methodology across all provincial boundaries and territories. SCANFI is the first coherent 30m Canadian wall-to-wall map of tree structure and species composition and opens novel opportunities for a plethora of studies in a number of areas, such as forest economics, fire science and ecology.
Limitations
The spectral disturbances of some areas disturbed by pests are not comprehensively represented in the training set, thus making it impossible to predict all defoliation cases. One such area, severely impacted by the recent eastern spruce budworm outbreak, is located on the North Shore of the St-Lawrence River. These forests are misrepresented in our training data, there is therefore an imprecision in our estimates.
Attributes of open stand classes, namely shrub, herbs, rock and bryoid, are more difficult to estimate through the photointerpretation of aerial images. Therefore, these estimates could be less reliable than the forest attribute estimates.
As reported in the manuscript, the uncertainty of tree species cover predictions is relatively high. This is particularly true for less abundant tree species, such as ponderosa pine and tamarack. The tree species layers are therefore suitable for regional and coarser scale studies. Also, the broadleaf proportion are slightly underestimated in this product version.
Our validation indicates that the areas in Yukon exhibit a notably lower R2 value. Consequently, estimates within these regions are less dependable.
Urban areas and roads are classified as rock, according to the 2020 Agriculture and Agri-Food Canada land-use classification map. Even though those areas contain mostly buildings and infrastructure, they may also contain trees. Forested urban parks are usually classified as forested areas. Vegetation attributes are also predicted for forested areas in agricultural regions.
Available layers
The following raster layers are available:
NFI land cover class values: Land cover classes include:
Bryoid (1)
Herbs (2)
Rock (3)
Shrub (4)
Treed broadleaf (5)
Treed conifer (6)
Treed mixed (7)
Water (8)
Aboveground tree biomass (tons/ha): biomass was derived from total merchantable volume estimates produced by provincial agencies
Height (meters): vegetation height
Crown closure (%): percentage of pixel covered by the tree canopy
Tree species cover (%): estimated as the proportion of the canopy covered by each tree species:
Balsam fir tree cover in percentage (Abies balsamea)
Black spruce tree cover in percentage (Picea mariana)
Douglas fir tree cover in percentage (Pseudotsuga menziesii)
Jack pine tree cover in percentage (Pinus banksiana)
Lodgepole pine tree cover in percentage (Pinus contorta)
Ponderosa pine tree cover in percentage (Pinus ponderosa)
Tamarack tree cover in percentage (Larix laricina)
White and red pine tree cover in percentage (Pinus strobus and Pinus resinosa)
robitalec
changed the title
[Dataset Title/Name]: SCANFI: the Spatialized CAnadian National Forest Inventory data product
SCANFI: the Spatialized CAnadian National Forest Inventory data product
Apr 30, 2024
Hello, colleagues just reached out to see if this data was available - just checking in. Please let me know if there is anything I can do on my end. As always, much appreciated!
Contact Details
robit.alec@gmail.com, luc.guindon@nrcan-rncan.gc.ca
Dataset description
I am assisting the data owner, Luc Guindon, with this data suggestion for the community data catalog. Thanks for your help and this incredible resource. Please let me know if I can help with writing an example script or any other documentation.
Dataset link:
SCANFI is on the Canada Open Data portal: https://open.canada.ca/data/en/dataset/18e6a919-53fd-41ce-b4e2-44a9707c52dc
Dataset description:
This data publication contains a set of 30m resolution raster files representing 2020 Canadian wall-to-wall maps of broad land cover type, forest canopy height, degree of crown closure and aboveground tree biomass, along with species composition of several major tree species. The Spatialized CAnadian National Forest Inventory data product (SCANFI) was developed using the newly updated National Forest Inventory photo-plot dataset, which consists of a regular sample grid of photo-interpreted high-resolution imagery covering all of Canada’s non-arctic landmass. SCANFI was produced using temporally harmonized summer and winter Landsat spectral imagery along with hundreds of tile-level regional models based on a novel k-nearest neighbours and random forest imputation method.
A full description of all methods and validation analyses can be found in Guindon et al. (2024). As the Arctic ecozones are outside NFI’s covered areas, the vegetation attributes in these regions were predicted using a single random forest model. The vegetation attributes in these arctic areas could not be rigorously validated. The raster file
SCANFI_aux_arcticExtrapolationArea.tif
identifies these zones.SCANFI is not meant to replace nor ignore provincial inventories which could include better and more regularly updated inputs, training data and local knowledge. Instead, SCANFI was developed to provide a current, spatially-explicit estimate of forest attributes, using a consistent data source and methodology across all provincial boundaries and territories. SCANFI is the first coherent 30m Canadian wall-to-wall map of tree structure and species composition and opens novel opportunities for a plethora of studies in a number of areas, such as forest economics, fire science and ecology.
Limitations
Available layers
The following raster layers are available:
Earth Engine Snippet if dataset already in GEE
Not already in GEE
Enter license information
Open Government Licence – Canada (https://open.canada.ca/en/open-government-licence-canada)
Keywords
forest attributes maps, Canada, forest management, trees, forest fires, modelling
Code of Conduct
The text was updated successfully, but these errors were encountered: