-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonteCarlo.py
74 lines (58 loc) · 3.47 KB
/
monteCarlo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from powervariation_sim import *
from numpy import *
import os
import sys
def testOdeAlgorithm(a, b, iRange, jRange,
width, length, xSpace, ySpace,
c,
n, isStandard, numIterations, mcIterations):
params = ' cellDim=' + str((a,b)) + ' networkDim=' + str((width, length)) \
+ ' spacing=' + str((xSpace, ySpace)) + ' nodes=' + str(n) \
+ ' iter=' + str(numIterations) + ' mcIter=' + str(mcIterations) \
+ ' c=' + str(c)
print("Testing ODE Algorithm with parameters:" + params)
numNetworksToPlot = (iRange[1] + 1 - iRange[0]) * (jRange[1] + 1 - jRange[0])
sumNormalisedThroughputTss = zeros([numNetworksToPlot, numIterations])
sumDataRateTss = zeros([numNetworksToPlot, numIterations])
sumApPowerTss = zeros([numNetworksToPlot, numIterations])
sumThroughputTss = zeros([numNetworksToPlot, numIterations])
sumUtilityTss = zeros([numNetworksToPlot, numIterations])
for i in range(mcIterations):
print("Running iteration " + str(i+1) + "/" + str(mcIterations))
networks = createNetworks(a, b, width, length, xSpace, ySpace, n, isStandard)
recordings = runPowerVariationAlgorithm(networks, numIterations, c)
recordingsToPlot = filter(lambda r: inRange(r.index[0], iRange) and inRange(r.index[1], jRange), recordings)
labels = map(lambda r: 'Network' + str(r.index), recordingsToPlot)
sumNormalisedThroughputTss += array(map(lambda r: r.normalisedThroughput, recordingsToPlot))
sumDataRateTss += array(map(lambda r: r.dataRate, recordingsToPlot))
sumApPowerTss += array(map(lambda r: r.apPower, recordingsToPlot))
sumThroughputTss += array(map(lambda r: multiply(r.dataRate, r.normalisedThroughput), recordingsToPlot))
sumUtilityTss += array(map(lambda r: r.utility, recordingsToPlot))
avgNormalisedThroughputTss = sumNormalisedThroughputTss / mcIterations
avgDataRateTss = sumDataRateTss / mcIterations
avgApPowerTss = sumApPowerTss / mcIterations
avgThroughputTss = sumThroughputTss / mcIterations
avgUtilityTss = sumUtilityTss / mcIterations
figDir = 'figures/ODE Algorithm/' + params
os.makedirs(figDir)
plotTimeseries(avgNormalisedThroughputTss, labels, 'Normalised Throughput', figDir + '/Normalised Throughput.png')
plotTimeseries(avgDataRateTss, labels, 'Data Rate', figDir + '/Data Rate.png')
plotTimeseries(avgApPowerTss, labels, 'AP Power', figDir + '/AP Power.png')
plotTimeseries(avgThroughputTss, labels, 'Throughput', figDir + '/Throughput.png')
plotTimeseries(avgUtilityTss, labels, 'Utility', figDir + '/Utility.png')
if __name__ == '__main__':
if len(sys.argv) != 8:
raise ValueError('Not enough arguments, expected [width, length, xSpace, ySpace, nodes, numIter, mcIter], got ' + str(sys.argv[1:]))
width = float(sys.argv[1])
length = float(sys.argv[2])
xSpace = float(sys.argv[3])
ySpace = float(sys.argv[4])
n = int(sys.argv[5])
numIter = int(sys.argv[6])
mcIter = int(sys.argv[7])
cValues = [20, 30, 25, 15, 35, 40]
for c in cValues:
testOdeAlgorithm(a = 5, b = 4, iRange = [1,3], jRange = [1,2],
width = width, length = length, xSpace = xSpace, ySpace = ySpace,
c = c,
n = n, isStandard = False, numIterations = numIter, mcIterations = mcIter)