-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgda_clustering.py
executable file
·407 lines (336 loc) · 18.2 KB
/
gda_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#!/usr/bin/env python3
"""
Code to generate GDA analysis
A script for turning GDA tracks into analysed clusters
"""
# MIT License
#
# Copyright (c) 2020-2021 Genome Research Ltd.
#
# Authors: Adam Reid (ar11@sanger.ac.uk), Eerik Aunin (ea10@sanger.ac.uk)
#
# This file is a part of the Genome Decomposition Analysis (GDA) pipeline.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Several species-specific analyses are done based on BedFile objects
from BedFile import BedFile
import sys
import os
import argparse
import numpy as np
import pandas as pd
import umap
from sklearn.preprocessing import MinMaxScaler
import hdbscan
from scipy.stats import ks_2samp
import json
import spectra
# Ignore NUMBA warnings related to running UMAP
import warnings
import numba
from numba import NumbaPerformanceWarning
from numba import NumbaDeprecationWarning
from numba import NumbaWarning
warnings.filterwarnings("ignore", category=NumbaPerformanceWarning)
warnings.filterwarnings("ignore", category=NumbaDeprecationWarning)
warnings.filterwarnings("ignore", category=NumbaWarning)
###############
# Functions
###############
def get_palette(n):
'''Returns a palette equally spaced hues with n colours'''
hues = np.linspace(15, 375, n+1).tolist()
hues = hues[0:len(hues)-1]
cols = [spectra.lch(65, 100, n) for n in hues]
hexcols = [n.hexcode for n in cols]
return hexcols
def get_cluster_cols_dict(max_n):
'''Returns a dictionary where the keys are cluster IDs and the values are colours assigned to the clusters'''
palette = get_palette(max_n + 1)
palette.insert(0, "#B3B4B5")
colours_dict = dict()
counter = 0
for i in range(-1, max_n + 1):
colours_dict[i] = palette[counter]
counter += 1
return colours_dict
def run_umap(data, n_neighbors=13):
'''Scale feature values each from 0 to 1 and run UMAP, return 2D embedding'''
# Scale data 0->1
scalar = MinMaxScaler()
scalar.fit(data)
scaled_data = scalar.transform(data)
reducer = umap.UMAP(random_state=123, n_neighbors=n_neighbors, min_dist=0.1, n_components=2, metric='euclidean')
embedding = reducer.fit_transform(scaled_data)
return(embedding)
def run_hdbscan(embedding, leaf_size, min_samples, min_cluster_size=200):
'''Cluster UMAP embedding with HDBSCAN, return cluster labels'''
clusterer = hdbscan.HDBSCAN(algorithm='best', alpha=1.0, approx_min_span_tree=True,
gen_min_span_tree=False, leaf_size=leaf_size,
metric='euclidean', min_cluster_size=min_cluster_size, min_samples=min_samples, p=None)
clusterer.fit(embedding)
return(clusterer.labels_)
def write_cluster_bed(data, cluster_colours, outdir):
'''Write BED file describing clusters - return dict of species -> filename'''
# Declare list of filnames
clusters_bed_fn = ''
# Loop over species to make BED file for each
clusters_bed_fn = ('clusters.bed')
cb = open(outdir + '/' + clusters_bed_fn, 'w')
for row_tuple in data.iterrows():
row = row_tuple[1]
bed_string = '\t'.join([row.chromosome, str(row.start), str(row.end + 1), str(row.cluster), '0', '+', str(row.start), str(row.end + 1), cluster_colours[row.cluster]])
cb.write(bed_string + "\n")
cb.close()
return(clusters_bed_fn)
def write_cluster_gff(data, outdir):
'''Write GFF of clusters'''
clusters_gff_fn = 'clusters.gff'
cg = open(outdir + '/' + clusters_gff_fn, 'w')
for row_tuple in data.iterrows():
row = row_tuple[1]
start = row.start + 1
end = row.end + 1
gff_string = '\t'.join([row.chromosome, 'GDA', 'region', str(start), str(end), '.', '+', '.', 'ID='+str(row.cluster)+';colour=1'])
cg.write(gff_string + "\n")
cg.close()
def get_significant_features(data, pvalue_cutoff):
'''Get significant features in each cluster and determine proportions of each cluster in each species'''
cluster_list = sorted(set(data['cluster'].tolist()))
# Make a dictionary of the data for ease of access
data_dict = data.to_dict()
cluster_dict = data_dict['cluster']
# Make a dictionary with cluster as key and a list of windows as the value
cluster_to_windows = dict()
for x in cluster_dict:
if cluster_dict[x] not in cluster_to_windows:
cluster_to_windows[cluster_dict[x]] = list()
cluster_to_windows[cluster_dict[x]].append(x)
# Record a set of significant features for returning
sig_features = set()
cluster_means = dict() # This is used for heatmap
cluster_genome_prop = dict() # Proportion of genome made up by cluster
# cluster proportions by species
cluster_species_genome_prop = dict()
species_list = sorted(set(data['species'].tolist()))
# Store signficant feature results for each cluster
cluster_results = dict()
cluster_results_df = pd.DataFrame(columns=['cluster', 'feature', 'cluster_data.size', 'other_data.size', 'stat_less', 'pvalue_less', 'stat_great', 'pvalue_great', 'cluster_median', 'other_median', 'cluster_mean', 'other_mean'])
for c in cluster_list:
cluster_data = data[data['cluster'] == c]
# Store proportion of genome made up of each cluster
cluster_genome_prop[c] = (cluster_data.size * 100) / (data.size)
# Determine proportion of cluster in each species' genomes
for s in species_list:
species_cluster_data = data[data.cluster.eq(c) & data.species.eq(s)]
if c not in cluster_species_genome_prop:
cluster_species_genome_prop[c] = dict()
cluster_species_genome_prop[c][s] = (species_cluster_data.size * 100) / (data[data.species.eq(s)].size)
for f in data.columns:
if f in ['species', 'cluster', 'start', 'end', 'chromosome']:
continue
# select values for this feature and this cluster
cluster_data = data[f][cluster_to_windows[c]]
other_index = data.index.difference(cluster_to_windows[c])
other_data = data[f][other_index]
# Two-sided kstest seems to give a lot of pvalue=1 where it shouldn't
(stat_less, pvalue_less) = ks_2samp(other_data, cluster_data, alternative="less", mode="exact")
(stat_great, pvalue_great) = ks_2samp(other_data, cluster_data, alternative="greater", mode="exact")
cluster_median = np.median(cluster_data)
other_median = np.median(other_data)
cluster_mean = np.mean(cluster_data)
other_mean = np.mean(other_data)
#Store cluster means for heatmap
if f not in cluster_means:
cluster_means[f] = dict()
cluster_means[f][c] = cluster_mean
if pvalue_less <= pvalue_cutoff or pvalue_great <= pvalue_cutoff:
sig_features.add(f)
if c not in cluster_results:
cluster_results[c] = dict()
if f not in cluster_results[c]:
cluster_results[c][f] = list()
cluster_results[c][f] = [cluster_data.size, other_data.size, stat_less, pvalue_less, stat_great, pvalue_great, cluster_median, other_median, cluster_mean, other_mean]
cluster_results_df = cluster_results_df.append({'cluster' : c, 'feature' : f, 'cluster_data.size' : cluster_data.size, 'other_data.size' : other_data.size, 'stat_less' : '{:.2f}'.format(stat_less), 'pvalue_less' : '{:.2e}'.format(pvalue_less), 'stat_great' : '{:.2f}'.format(stat_great), 'pvalue_great' : '{:.2e}'.format(pvalue_great), 'cluster_median' : '{:.5f}'.format(cluster_median), 'other_median' : '{:.5f}'.format(other_median), 'cluster_mean' : '{:.5f}'.format(cluster_mean), 'other_mean' : '{:.5f}'.format(other_mean)}, ignore_index=True)
return(sig_features, cluster_results_df, cluster_species_genome_prop, cluster_means)
def feature_histograms(data, sig_features):
'''Generate data for feature histograms'''
feat_hist_dict = dict()
for f in sig_features:
for c in sorted(set(data['cluster'].tolist())):
# Select rows matching feature and cluster from data
data_subset = data.loc[data.cluster==c]
if f not in feat_hist_dict:
feat_hist_dict[f] = dict()
if c not in feat_hist_dict[f]:
feat_hist_dict[f][c] = list()
feat_hist_dict[f][c] = data_subset[f].tolist()
return(feat_hist_dict)
# Functions for writing data out for display with Dash
def write_feature_table(table_df, outfile, outdir):
'''Write table of significant features for reading by Dash'''
table_df.to_csv(outdir + '/' + outfile, index=False)
def write_embedding(emb, cluster_labels, species, outfile, outdir, cluster_colours):
'''Write out UMAP embedding for display with Dash'''
o = open(outdir + '/' + outfile, 'w')
o.write(','.join(['UMAP1', 'UMAP2', 'species', 'cluster', 'color']))
o.write('\n')
for i in range(0,len(cluster_labels)):
o.write(','.join([str(emb[i,0]), str(emb[i,1]), str(species[i]), str(cluster_labels[i]), str(cluster_colours[cluster_labels[i]])]))
o.write('\n')
o.close()
def write_cluster_heatmap(cluster_means, sig_features, outfile, outdir):
'''Produce an output file with the data for the heatmap of genomic features per cluster'''
norm_vals = dict()
for f in cluster_means:
if f in sig_features:
min_val = min(cluster_means[f].values())
max_val = max(cluster_means[f].values())
for c in cluster_means[f]:
if f not in norm_vals:
norm_vals[f] = dict()
norm_vals[f][c] = (cluster_means[f][c] - min_val) / (max_val - min_val)
df = pd.DataFrame.from_dict(norm_vals)
df.to_csv(outdir + '/' + outfile)
def write_genome_prop(genome_props, outfile, outdir):
'''Write out CSV of proportions of genome composed of each cluster'''
df = pd.DataFrame.from_dict(genome_props)
df.to_csv(outdir + '/' + outfile)
def write_chr_comp_heatmap(data, outfile, outdir):
'''Write out chromosome composition heatmap data as CSV'''
comp_res_df = pd.DataFrame(data)
comp_res_df = comp_res_df.fillna(0)
comp_res_df = comp_res_df.transpose()
comp_res_df.to_csv(outdir + '/' + outfile)
def write_json(data, outfile, outdir):
'''Write out JSON file of data'''
with open(outdir + '/' + outfile, 'w') as file:
file.write(json.dumps(data))
def write_circos_json(json_dict, outfile, outdir):
'''Write out a JSON file with chromosomal locations of clusters. This can be used to make a Circos plot or a raster plot'''
with open(outdir + '/' + outfile, 'w') as file:
file.write(json.dumps(json_dict))
def check_umap_version():
'''Check UMAP version and print a warning if it is not what is expected. UMAP crashes if it's a version that is too old (e.g. 0.4.2)'''
installed_umap_version = umap.__version__
expected_umap_version = "0.4.6"
if umap.__version__ != expected_umap_version:
sys.stderr.write("Warning: UMAP version appears to be different from what is expected for the GDA pipeline (the installed version is {} but the expected version is {})\n".format(installed_umap_version, expected_umap_version))
def main(umap_n_neighbors, hdbscan_min_cluster_size, pvalue_cutoff, cluster_position_histogram_window_number, outdir, tracks_file):
#################
# Procedural code
#################
check_umap_version()
sys.stderr.write('\t'.join([str(umap_n_neighbors), str(hdbscan_min_cluster_size), str(pvalue_cutoff), tracks_file]))
sys.stderr.write('\n')
# Set up output directory
if not os.path.exists(outdir):
sys.stderr.write("Creating directory: {}\n".format(outdir))
os.mkdir(outdir)
else:
sys.stderr.write("{} already exists\n".format(outdir))
# Read in GDA data tracks as pandas data frame
# GDA data tracks file format: window_name (unique), species, chromosome, start, end, feature_values (tab separated)
data = pd.read_csv(tracks_file, sep='\t', index_col=0)
# Filter windows remove any N-containing windows
if 'N_percentage' in data.columns:
data.drop(index=data[data.N_percentage>0].index, axis=0, inplace=True)
# Make a dataframe with only window_name index and feature values suitable for clustering
data_to_cluster = data.drop(['species', 'start', 'end', 'chromosome'], axis=1)
# Get UMAP embedding for the data
sys.stderr.write("Running UMAP\n")
embedding = run_umap(data_to_cluster, umap_n_neighbors)
# cluster UMAP embedding using HDBSCAN
sys.stderr.write("Running HDBSCAN\n")
cluster_labels = run_hdbscan(embedding, args.leaf_size, args.min_samples, min_cluster_size=hdbscan_min_cluster_size)
cluster_colours = get_cluster_cols_dict(max(set(cluster_labels)))
# Add cluster data to main data frame
data['cluster'] = cluster_labels
# Write out UMAP embedding
outfile = "umap_clustering.csv"
write_embedding(embedding, cluster_labels, data['species'].tolist(), outfile, outdir, cluster_colours)
# Write GFF file of clusters
write_cluster_gff(data, outdir)
#########################
# Get significant features, significant feature stats per cluster, proportion of each cluster in each species and cluster means (for heatmap)
# This step is very slow - needs optimising!
sys.stderr.write("Determining enriched features\n")
(sig_features, cluster_results, cluster_species_genome_prop, cluster_means) = get_significant_features(data, pvalue_cutoff)
# Write sig features for reading by Dash
feature_table_filename = "feattable.csv"
write_feature_table(cluster_results, feature_table_filename, outdir)
# Write genome proportions
genome_prop_outfile = "genomeprops.csv"
write_genome_prop(cluster_species_genome_prop, genome_prop_outfile, outdir)
# Write cluster/feature heatmap data
cluster_heatmap_filename = 'cluster_heatmap.csv'
write_cluster_heatmap(cluster_means, sig_features, cluster_heatmap_filename, outdir)
####################
# Make data for feature histograms
feat_hist_dict = feature_histograms(data, sig_features)
feat_hist_filename = "feathist.json"
write_json(feat_hist_dict, feat_hist_filename, outdir)
#####################################
# Species separated for these analyses
################
for s in sorted(sorted(set(data['species'].tolist()))):
# Make species-specific directory
if not os.path.exists(outdir + '/' + s):
os.mkdir(outdir + '/' + s)
# Write BED file
bed_cluster_file = write_cluster_bed(data[data.species==s], cluster_colours, outdir + '/' + s)
# Run the script that finds which cluster junctions in the BED file occur at a different rate than what is expected by chance
cluster_junctions_command = "cluster_junctions_fisher_test.py {} {}".format(outdir + '/' + s + '/' + bed_cluster_file, outdir + '/' + s)
t = os.system(cluster_junctions_command)
if t != 0:
sys.stderr.write("Error running command {}\n".format(cluster_junctions_command))
sys.exit(1)
# Read back BED file of data (this could be optimised!)
bed_data = BedFile(outdir + '/' + s + '/' + bed_cluster_file)
#########################################
# Generate cluster histograms with window number
window_freqs = bed_data.cluster_histograms(cluster_position_histogram_window_number)
# Write dict of data out to file
cluster_position_histogram_file = "clusterpos.json"
write_json(window_freqs, cluster_position_histogram_file, outdir + '/' + s + '/')
#####################
#Make heatmap of chromosome cluster composition
comp_res = bed_data.chromosome_composition()
chr_composition_heatmap_file = "chrcompheat.csv"
write_chr_comp_heatmap(comp_res, chr_composition_heatmap_file, outdir + '/' + s + '/')
######################
# Make JSON files for Circos data
######################
circos_json_dict = bed_data.circos_json()
write_circos_json(circos_json_dict, 'circos.json', outdir + '/' + s + '/')
if __name__ == "__main__":
###############
# Parse command line arguments
###############
parser = argparse.ArgumentParser(description='Genome Decomposition Analysis of windowed tracks')
parser.add_argument("-n", "--n_neighbors", help="N neighbours argument for UMAP [13]", default=13, type=int)
parser.add_argument("-c", "--cluster_size_cutoff", help="HDBSCAN min cluster size [200]", default=200, type=int)
parser.add_argument("-p", "--pvalue_cutoff", help="p-value cutoff for feature enrichment in clusters [1e-20]", default=1e-20, type=float)
parser.add_argument("-w", "--cluster_position_histogram_window_number", help="Cluster position histogram window number", default=20, type=float)
parser.add_argument("--leaf_size", help="leaf_size setting for HDBSCAN (default: 40)", default=40, type=int)
parser.add_argument("--min_samples", help="min_samples setting for HDBSCAN (default: None)", default=None, type=int)
parser.add_argument("-d", "--directory", help="Output dir [gda_out]", default="gda_out", type=str)
parser.add_argument("tracks", help="File of windowed GDA tracks", type=str)
args = parser.parse_args()
main(args.n_neighbors, args.cluster_size_cutoff, args.pvalue_cutoff, args.cluster_position_histogram_window_number, args.directory, args.tracks)