-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdrs.py
149 lines (113 loc) · 3.99 KB
/
drs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import math
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data_utils
import network
from utils import make_z, make_y
from utils import normalize_info, accuracy
def get_score_stats(netG, netD, sample=50000):
score_D = sample_scores(netG, netD, wd=1, wc=0, sample_size=sample)
score_C = sample_scores(netG, netD, wd=0, wc=1, sample_size=sample)
M = np.exp(np.max(score_D))
w = np.std(score_D) / np.sqrt(np.mean(np.square(score_C)))
return M, w
def sample_scores(netG, netD, nz=100, ny=10, wd=1, wc=1, sample_size=50000, batch_size=100):
scores = []
for i in range(sample_size // batch_size):
z = make_z(batch_size, nz).cuda()
y = make_y(batch_size, ny).cuda()
with torch.no_grad():
x = netG(z, y)
s = gold(netD, x, y, wd, wc)
scores.append(s)
scores = np.concatenate(scores, axis=0)
return scores
def gold(netD, x, y, wd=1, wc=1, verbose=False):
with torch.no_grad():
out_D, out_C = netD(x) # B x 1, B x nc
score_D = out_D.view(-1) * wd
out_C = torch.softmax(out_C, dim=1)
out_C = out_C[torch.arange(len(out_C)), y]
score_C = torch.log(out_C) * wc
if verbose:
plt.hist(score_D.cpu().numpy())
plt.hist(score_C.cpu().numpy())
return (score_D + score_C).cpu().numpy()
def drs(netG, netD, num_samples=10, perc=10, nz=100, ny=10, batch_size=100, eps=1e-6):
M, w = get_score_stats(netG, netD)
ones = np.ones(batch_size).astype('int64')
images = [[] for _ in range(ny)]
for cls in range(10):
while len(images[cls]) < num_samples:
z = make_z(batch_size, nz).cuda()
y = make_y(batch_size, ny, cls).cuda()
with torch.no_grad():
x = netG(z, y)
r = np.exp(gold(netD, x, y, 1, w))
p = np.minimum(ones, r/M)
f = np.log(p + eps) - np.log(1 - p + eps) # inverse sigmoid
f = (f - np.percentile(f, perc))
p = [1 / (1 + math.exp(-x)) for x in f] # sigmoid
accept = np.random.binomial(ones, p)
for i in range(batch_size):
if accept[i] and len(images[cls]) < num_samples:
images[cls].append(x[i].detach().cpu())
images = torch.stack([x for l in images for x in l])
return images
def adjust_learning_rate(optimizer, epoch, base_lr, lr_decay_period=20, lr_decay_rate=0.1):
lr = base_lr * (lr_decay_rate ** (epoch // lr_decay_period))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def fitting_capacity(samples, testset, nc=1, ny=10, epochs=40, eval_period=10, verbose=False):
netC = network.LeNet(32, nc, ny)
netC = nn.DataParallel(netC, [0]).cuda()
optimizerC = optim.Adam(netC.parameters(), lr=0.001, betas=(0.5, 0.999))
criterionCE = nn.CrossEntropyLoss()
loader = data_utils.DataLoader(samples, batch_size=128, shuffle=True, num_workers=8)
test_acc = 0
for epoch in range(1, epochs + 1):
adjust_learning_rate(optimizerC, epoch, 0.001, epochs//2)
info = {'num': 0, 'loss_C': 0, 'acc': 0}
# train network
netC.train()
for i, (x, y) in enumerate(loader):
# forward
x = x.cuda()
y = y.cuda()
out = netC(x) # B x nc
loss_C = criterionCE(out, y)
# backward
optimizerC.zero_grad()
loss_C.backward()
optimizerC.step()
# update loss info
info['num'] += 1
info['loss_C'] += loss_C.item()
info['acc'] += accuracy(out, y)
# evaluate performance
info = normalize_info(info)
message = "Epoch: {} C: {:.4f} acc (train): {:.4f}".format(epoch, info['loss_C'], info['acc'])
if epoch % eval_period == 0:
test_acc = eval_classifier(netC, testset)
message += " acc (test): {:.4f}".format(test_acc)
if verbose:
print(message)
return test_acc
def eval_classifier(netC, testset):
loader = data_utils.DataLoader(testset, batch_size=128, shuffle=False, num_workers=8)
netC.eval()
info = {'num': 0, 'acc': 0} # loss info
for i, (x, y) in enumerate(loader):
x = x.cuda() # B x nc x H x W
y = y.cuda() # B
with torch.no_grad():
pred = netC(x).max(1)[1]
correct = pred.eq(y).sum().item()
info['num'] += 1
info['acc'] += correct / len(x)
acc = info['acc'] / info['num']
return acc