-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
32 lines (24 loc) · 906 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from flask import Flask, request, render_template
from featureExtractor import featureExtraction
from pycaret.classification import load_model, predict_model
model = load_model('model/phishingdetection')
def predict(url):
data = featureExtraction(url)
result = predict_model(model, data=data)
prediction_score = result['prediction_score'][0]
prediction_label = result['prediction_label'][0]
return {
'prediction_label': prediction_label,
'prediction_score': prediction_score * 100,
}
app = Flask(__name__)
@app.route("/", methods=["GET", "POST"])
def index():
data = None
if request.method == "POST":
url = request.form["url"]
data = predict(url)
return render_template('index.html', url=url, data=data )
return render_template("index.html", data=data)
if __name__ == "__main__":
app.run(debug=True)