forked from AmanPriyanshu/HexaLite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_embeds.py
48 lines (42 loc) · 1.38 KB
/
generate_embeds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pandas as pd
import numpy as np
import os
import re
from tqdm import tqdm
import pickle
def save(path, obj):
dbfile = open(path, 'ab')
pickle.dump(obj, dbfile)
dbfile.close()
def load(path):
dbfile = open(path, 'rb')
return pickle.load(dbfile)
def generate_dir_tree():
path = './data/txts/'
dirs = sorted([i for i in os.listdir(path) if '.' not in i])
for directory in dirs:
if not os.path.exists('./embeds/'+directory):
os.mkdir('./embeds/'+directory)
def bag_of_words(txt, directory):
df = pd.read_csv('./vocab/Vocab_'+str(directory)+'.csv')
df = df.values
words = df.T[0]
words = [i for i in words]
bog = [words.index(word) for word in txt.split() if word in words]
return bog
def extract_bog():
path = './data/txts/'
dirs = sorted([i for i in os.listdir(path) if '.' not in i])
for directory in dirs:
bog = []
bog_path = []
for txt_path in tqdm(sorted([path+directory+'/'+i for i in os.listdir(path+directory)]), desc=path+directory):
with open(txt_path, 'r', encoding='utf-8') as f:
txt = ' '.join([i.strip().replace('\n', ' ') for i in f.readlines()])
txt = ''.join([i if i.isalpha() else ' ' for i in txt])
txt = re.sub("\s\s+" , " ", txt.lower())
bog.append(bag_of_words(txt, directory))
bog_path.append(txt_path)
save('./embeds/'+directory+'.pt', {'BOG': bog, 'PATH': bog_path})
if __name__ == '__main__':
extract_bog()