forked from iam-abbas/cs-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogistic-Regression
69 lines (48 loc) · 1.89 KB
/
Logistic-Regression
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Logistic regression implemented from Scratch in Python
import sys
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(scores):
return 1 / (1 + np.exp(-scores))
def log_likelihood(features, target, weights):
scores = np.dot(features, weights)
ll = np.sum(target * scores - np.log(1 + np.exp(scores)))
return ll
def logistic_regression(features,target,num_steps,learning_rate,
add_intercept=False):
if add_intercept:
intercept = np.ones((features.shape[0], 1))
features = np.hstack((intercept, features))
weights = np.zeros(features.shape[1])
for step in range(1,num_steps):
scores = np.dot(features, weights)
predictions = sigmoid(scores)
# Update weights with gradient
output_error_signal = target - predictions
gradient = np.dot(features.T, output_error_signal)
weights += learning_rate * gradient
# Print log-likelihood every so often
if step % 10000 == 0:
print (log_likelihood(features, target, weights))
return weights
np.random.seed(12)
num_observations = 5000
x1 = np.random.multivariate_normal([0, 0], [[1, .75], [.75, 1]],
num_observations)
x2 = np.random.multivariate_normal([1, 4], [[1, .75], [.75, 1]],
num_observations)
simulated_separableish_features = np.vstack((x1, x2)).astype(np.float32)
simulated_labels = np.hstack((np.zeros(num_observations),
np.ones(num_observations)))
plt.figure(figsize=(12, 8))
plt.scatter(
simulated_separableish_features[:, 0],
simulated_separableish_features[:, 1],
c=simulated_labels,
alpha=.4)
plt.show()
# Running the model
weights = logistic_regression(simulated_separableish_features,simulated_labels,num_steps=300000,
learning_rate=5e-5,
add_intercept=True)
print(weights)