-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCN_heatmap.py
76 lines (74 loc) · 3.49 KB
/
CN_heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pymongo
import pandas as pd
from pandas.io import json
import matplotlib.pyplot as plt
import seaborn as sns
client = pymongo.MongoClient()
db = client.springer
if __name__ == '__main__':
pd.set_option('display.width', 1000)
cns = ['eff_cn', 'VoronoiEd_cn', 'okeeffe_cn']
props = ['hp', 'ht']
elements = ['Li', 'Na', 'Mg', 'K', 'Ca', 'Al', 'Si']
for cn in cns:
for prop in props:
# big_df = pd.read_pickle(prop + '-O_' + cn + '.pkl')
# '''
print '-------------------'
big_df = pd.DataFrame()
for el in elements:
indexes_to_drop = []
df = pd.read_pickle(prop + '_cn.pkl')
comps_to_remove = []
for i, row in df.iterrows():
if el not in row['metadata']['_structure']['elements'] \
or 'O' not in row['metadata']['_structure']['elements']:
indexes_to_drop.append(i)
if el in row['metadata']['_structure']['elements']:
try:
df.set_value(i, el + '_cn', json.loads(row[cn])[el])
except KeyError:
for sp in json.loads(row[cn]).keys():
if el in sp:
df.set_value(i, el + '_cn', json.loads(row[cn])[sp])
except TypeError:
pass
if row['is_ordered'] < 1:
comps_to_remove.append(row['reduced_cell_formula'])
df.drop(df.index[indexes_to_drop], inplace=True)
for comp in comps_to_remove:
df.drop(df[df['reduced_cell_formula'] == comp].index, inplace=True)
df_groupby = df.groupby(['reduced_cell_formula', 'is_' + prop], as_index=False).mean()
# Find all compounds with CN > 8
# print df_groupby[df_groupby[el + '_cn'] > 8]
# for i, row in df_groupby[df_groupby[el + '_cn'] > 8].iterrows():
# print df_groupby.loc[df_groupby['reduced_cell_formula'] == row['reduced_cell_formula']]
# print df.loc[df['reduced_cell_formula'] == row['reduced_cell_formula']]
newdf = df_groupby[['is_' + prop, el + '_cn']].groupby('is_' + prop).mean()
big_df[el + '-O'] = newdf[el + '_cn'].tolist()
print big_df
big_df = big_df.transpose()
if prop == 'hp':
big_df.columns = ['Low pressure', 'High pressure']
else:
big_df.columns = ['Low temperature', 'High temperature']
# big_df.to_pickle(prop + '-O_' + cn + '.pkl')
print big_df
sns.set(font_scale=4)
sns.heatmap(big_df, vmin=4, vmax=10)
if cn == 'VoronoiEd_cn':
name = 'Voronoi'
elif cn == 'eff_cn':
name = 'Effective'
else:
name = "O'Keeffe"
if prop == 'hp':
plt.xlabel('Pressure (GPa)', fontsize=48)
plt.ylabel('Bonds', fontsize=48)
plt.title('Average ' + name + ' coordination number', fontsize=48)
else:
plt.xlabel('Temperature (K)', fontsize=48)
plt.ylabel('Bonds', fontsize=48)
plt.title('Average ' + name + ' coordination number', fontsize=48)
plt.figure(figsize=(20,10))
plt.show()