-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysePauling.py
444 lines (413 loc) · 19.1 KB
/
analysePauling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import re
from collections import defaultdict
import matplotlib.pyplot as plt
import pandas as pd
import pymongo
import seaborn as sns
from pandas.io import json
from pymatgen import Structure
from pymatgen.matproj.rest import MPRester
from getcoordination import VoronoiCoordFinder_edited, get_avg_cns, get_cation_weighted_avg, EffectiveCoordFinder
from matminer.descriptors.composition_features import *
from tina_cn_code.okeeffe_CN import get_avg_cn as okeeffe_get_avg_cn
client = pymongo.MongoClient()
db = client.springer
mpr = MPRester()
def create_tagscoll():
coll = db['pauling_file']
min_tags_collname = 'pauling_file_min_tags'
db[min_tags_collname].drop()
coll.aggregate([{'$match': {'structure': {'$exists': True}, 'metadata._structure.is_valid': True,
'errors': {
'$nin': ['structural composition and refined/alphabetic formula do not match']}}},
{'$project': {'key': 1, 'metadata': 1, 'structure': 1}}, {'$out': min_tags_collname}])
db[min_tags_collname].create_index([('key', pymongo.ASCENDING)], unique=True)
# Remove Deuterium
for doc in db[min_tags_collname].find().batch_size(75):
for el in doc['metadata']['_structure']['elements']:
if el == 'D':
db[min_tags_collname].remove({'key': doc['key']})
break
def set_hpht_tags(doc, lt_highcutff, ht_lowcutoff):
"""
Sets temperature tags only based on the value of the field 'metadata._Springer.expdetails.temperature'
:param lt_highcutff: highest temperature for low temperature measurments
:param ht_lowcutoff: lowest temperature for high temperature measurement
:param doc: Pauling file record
:return:
"""
coll = db['pauling_file_min_tags']
title = doc['metadata']['_Springer']['title']
phase = doc['metadata']['_Springer']['geninfo']['Phase Label(s)']
# Set pressure tags
if doc['key'] in ['sd_1601567', 'sd_1601568',
'sd_1601569']: # These 3 ids (sd_1601567, sd_1601568, sd_1601569) have 'p =' in title but are
# unparsable and they are all < 1atm
coll.update({'key': doc['key']}, {'$set': {'is_hp': False}})
elif 'p =' in title:
try:
pressure_str = re.findall(r'p = (.*) GPa', title)[0]
pressure_val = float(re.sub('\(.*\)', '', pressure_str))
coll.update({'key': doc['key']}, {'$set': {'pressure (GPa)': pressure_val}})
if pressure_val > 0.00010132501:
coll.update({'key': doc['key']}, {'$set': {'is_hp': True}})
else:
coll.update({'key': doc['key']}, {'$set': {'is_hp': False}})
except UnicodeEncodeError as e:
coll.update({'key': doc['key']}, {'$set': {'is_hp': None}})
raise UnicodeEncodeError
elif ' hp' in title or ' hp' in phase:
coll.update({'key': doc['key']}, {'$set': {'is_hp': True}})
else:
coll.update({'key': doc['key']}, {'$set': {'is_hp': False}})
# Set temperature tags
if 'temperature' in doc['metadata']['_Springer']['expdetails']:
exp_t = doc['metadata']['_Springer']['expdetails']['temperature']
try:
temp_str = re.findall(r'T\s*=\s*(.*)\s*K', exp_t)[0]
temp_val = float(re.sub('\(.*\)', '', temp_str))
if temp_val > ht_lowcutoff:
coll.update({'key': doc['key']}, {'$set': {'is_ht': True}})
elif temp_val < lt_highcutff:
coll.update({'key': doc['key']}, {'$set': {'is_ht': False}})
else:
coll.update({'key': doc['key']}, {'$set': {'is_ht': None}})
coll.update({'key': doc['key']}, {'$set': {'temperature (K)': temp_val}})
except:
coll.update({'key': doc['key']}, {'$set': {'is_ht': None}})
else:
coll.update({'key': doc['key']}, {'$set': {'is_ht': None}})
def set_hpht_dataset_tags():
tagcoll = db['pauling_file_min_tags']
# Initialize the tags 'is_hp_dataset' and 'is_ht_dataset'
tagcoll.update({}, {'$set': {'is_hp_dataset': False, 'is_ht_dataset': False}}, multi=True)
comps_hp_true = set()
comps_hp_false = set()
comps_ht_true = set()
comps_ht_false = set()
hpcomps_ids = defaultdict(list)
htcomps_ids = defaultdict(list)
x = 0
for doc in tagcoll.find().batch_size(75):
x += 1
if x % 1000 == 0:
print x
composition = doc['metadata']['_structure']['reduced_cell_formula_abc']
if doc['is_hp'] is True and doc['is_ht'] in [False, None]:
comps_hp_true.add(composition)
hpcomps_ids[composition].append(doc['key'])
elif doc['is_hp'] is False and doc['is_ht'] in [False, None]:
comps_hp_false.add(composition)
hpcomps_ids[composition].append(doc['key'])
if doc['is_ht'] is True and doc['is_hp'] is False:
comps_ht_true.add(composition)
htcomps_ids[composition].append(doc['key'])
elif doc['is_ht'] is False and doc['is_hp'] is False:
comps_ht_false.add(composition)
htcomps_ids[composition].append(doc['key'])
hp_unique_comps = comps_hp_true.intersection(comps_hp_false)
print len(hp_unique_comps)
for comp in hp_unique_comps:
ids_toset = hpcomps_ids[comp]
for id in ids_toset:
tagcoll.update({'key': id}, {'$set': {'is_hp_dataset': True}})
ht_unique_comps = comps_ht_true.intersection(comps_ht_false)
print len(ht_unique_comps)
for comp in ht_unique_comps:
ids_toset = htcomps_ids[comp]
for id in ids_toset:
# Remove docs with 'is_ht' = None ('null' in mongo)
for doc in tagcoll.find({'key': id}):
ht_tag = doc['is_ht']
if ht_tag is not None:
tagcoll.update({'key': id}, {'$set': {'is_ht_dataset': True}})
def add_features(df):
for i, row in df.iterrows():
df.set_value(i, 'reduced_cell_formula', row['metadata']['_structure']['reduced_cell_formula'])
try:
df.set_value(i, 'space_group', int(row['metadata']['_Springer']['geninfo']['Space Group']))
except:
df.set_value(i, 'space_group', None)
try:
df.set_value(i, 'density', float(row['metadata']['_Springer']['geninfo']['Density'].split()[2]))
except IndexError as e:
df.set_value(i, 'density', None)
structure = Structure.from_dict(row['structure'])
composition = Composition(structure.composition)
num_density = (composition.num_atoms/structure.volume)
df.set_value(i, 'number_density', num_density)
num_vol = (1/num_density)
df.set_value(i, 'number_volume', num_vol)
if row['metadata']['_structure']['is_ordered']:
df.set_value(i, 'is_ordered', 1)
else:
df.set_value(i, 'is_ordered', 0)
return df
def set_coordination(df):
for i, row in df.iterrows():
if i % 10 == 0:
print i
struc = Structure.from_dict(row['structure'])
# using own edited Voronoi algorithm
try:
specie_meancoord = get_avg_cns(VoronoiCoordFinder_edited(struc).get_cns())
except Exception as e:
print e
continue
df.set_value(i, 'VoronoiEd_cn', json.dumps(specie_meancoord))
df.set_value(i, 'Voronoi_cation_avgcn', get_cation_weighted_avg(specie_meancoord, struc))
# using own Effective coordination algorithm
try:
specie_meaneffcoord = get_avg_cns(EffectiveCoordFinder(struc).get_cns(radius=10.0))
except Exception as e:
print e
continue
df.set_value(i, 'eff_cn', json.dumps(specie_meaneffcoord))
df.set_value(i, 'eff_cation_avgcn', get_cation_weighted_avg(specie_meaneffcoord, struc))
# using Tina's O'Keeffe coordination algorithm
if row['metadata']['_structure']['is_ordered']:
try:
okeeffe_coord = okeeffe_get_avg_cn(struc)
except Exception as e:
print e
continue
df.set_value(i, 'okeeffe_cn', json.dumps(okeeffe_coord))
df.set_value(i, 'okeeffe_cn_avg', get_cation_weighted_avg(okeeffe_coord, struc))
return df
def group_merge_df(prop):
df = pd.read_pickle(prop + '_cn.pkl')
df_groupby = df.groupby(['reduced_cell_formula', 'is_' + prop], as_index=False).mean()
df_2nd_groupby = df_groupby.groupby('is_' + prop, as_index=False)
df_groupby_false = pd.DataFrame
df_groupby_true = pd.DataFrame
for name, group in df_2nd_groupby:
if not name:
df_groupby_false = group
elif name:
df_groupby_true = group
df_merge = pd.merge(df_groupby_false, df_groupby_true, on='reduced_cell_formula',
suffixes=('_l' + prop[-1], '_h' + prop[-1]))
return df_groupby, df_merge
def plot_violin(df, propname):
plot_props = ['space_group']
# plot_props = ['space_group', 'density', 'number_density', 'number_volume']
if propname == 'hp':
df['is_' + propname] = df['is_' + propname].map({True: 'HP', False: 'LP'})
elif propname == 'ht':
df['is_' + propname] = df['is_' + propname].map({True: 'HT', False: 'LT'})
for pro in plot_props:
sns.violinplot(x='is_' + propname + '_dataset', y=pro, hue='is_' + propname, data=df, palette='muted',
split=True)
if pro == 'space_group':
plt.xlabel('Number of compounds', fontsize=48)
plt.ylabel('Space Group', fontsize=48)
if propname == 'hp':
plt.title('Space group distribution of HP and LP compounds', fontsize=48)
elif propname == 'ht':
plt.title('Space group distribution of HT and LT compounds', fontsize=48)
plt.yticks(fontsize=48)
plt.ylim((-50, 300))
plt.legend(title='', fontsize=48)
plt.show()
def plot_xy(df, propname, descriptor=None):
plot_props = ['space_group', 'density', 'number_density', 'number_volume']
for pro in plot_props:
# fig, ax = plt.subplots()
# for k, v in df.iterrows():
# if pro == 'density':
# label_cutoff = 0.5
# elif pro == 'space_group':
# else:
# label_cutoff = 0.75
# if (abs(v[pro + '_y'] - v[pro + '_x'])) / v[pro + '_x'] > label_cutoff:
# ax.text(v[pro + '_x'], v[pro + '_y'], v['composition'])
if descriptor is None:
df.plot(x=pro + '_l' + propname[-1], y=pro + '_h' + propname[-1], kind='scatter')
else:
color_column = df[descriptor]
df.plot(x=pro + '_l' + propname[-1], y=pro + '_h' + propname[-1], kind='scatter', c=color_column)
if pro == 'space_group':
plt.xlabel('Space groups of ground states', fontsize=48)
plt.ylabel('Space groups of excited states', fontsize=48)
plt.xlim((0, 250))
plt.ylim((0, 250))
elif pro == 'number_density':
plt.xlabel('Number density of ground states (/A^3)', fontsize=48)
plt.ylabel('Number density of excited states (/A^3)', fontsize=48)
elif pro == 'number_volume':
plt.xlabel('Number volume of ground states (A^3)', fontsize=48)
plt.ylabel('Number volume of excited states (A^3)', fontsize=48)
if propname == 'hp':
plt.title('HP and LP phases', fontsize=48)
elif propname == 'ht':
plt.title('HT and LT phases', fontsize=48)
plt.xticks(fontsize=48)
plt.yticks(fontsize=48)
plt.show()
sns.set_style('whitegrid')
# TODO: Check how to automatically get stats (mean, median,..) from the descriptor column and use them to set limits
# for plot colors
# TODO: Check how to set legends in plots (return them here and pass them onto plot_xy()
class AddDescriptor:
def __init__(self, propname):
self.df = pd.read_pickle(propname + '_cn_merged.pkl')
self.descriptor = ''
def X(self):
self.descriptor = 'col_eleneg_std'
for i, row in self.df.iterrows():
try:
electronegativity_std = get_std(get_pymatgen_eldata_lst(row['reduced_cell_formula'], 'X'))
self.df.loc[i, 'eleneg_std'] = electronegativity_std
if electronegativity_std < 0.70:
self.df.loc[i, 'col_eleneg_std'] = 'b'
elif 0.70 <= electronegativity_std <= 1.00:
self.df.loc[i, 'col_eleneg_std'] = 'g'
else:
self.df.loc[i, 'col_eleneg_std'] = 'r'
except ValueError:
self.df.loc[i, 'col_eleneg_std'] = 'k'
continue
return self.df, self.descriptor
def coefficient_of_linear_thermal_expansion(self):
self.descriptor = 'col_thermalcoeff'
for i, row in self.df.iterrows():
try:
coeff_std = get_std(
get_pymatgen_eldata_lst(row['reduced_cell_formula'], 'coefficient_of_linear_thermal_expansion'))
self.df.loc[i, 'linear_thermal_exp_coeff'] = coeff_std
if coeff_std < 3.10:
self.df.loc[i, 'col_thermalcoeff'] = 'r'
elif 3.10 <= coeff_std <= 7.45:
self.df.loc[i, 'col_thermalcoeff'] = 'g'
else:
self.df.loc[i, 'col_thermalcoeff'] = 'b'
except:
self.df.loc[i, 'col_thermalcoeff'] = 'k'
continue
return self.df, self.descriptor
def is_magnetic(self):
self.descriptor = 'col_mag'
ferromagnetic = ['Fe']
# paramagnetic = ['Li', 'O', 'Na', 'Mg', 'Al', 'Ca', 'Ti', 'Mn', 'Sr', 'Zr', 'Mo', 'Ru', 'Rh', 'Pd', 'Sn', 'Ba',
# 'Ce', 'Nd', 'Sm', 'Eu', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'W', 'Os', 'Ir', 'Pt']
for i, row in self.df.iterrows():
is_magnetic = False
elements = Composition(row['reduced_cell_formula']).elements
for elem in elements:
if elem.symbol in ferromagnetic:
self.df.loc[i, 'col_mag'] = 'b'
is_magnetic = True
break
if not is_magnetic:
self.df.loc[i, 'col_mag'] = 'r'
return self.df, self.descriptor
def is_ordered(self):
self.descriptor = 'col_ord'
for i, row in self.df.iterrows():
if row['is_ordered_l'] == row['is_ordered_y']:
if row['is_ordered_x'] == 1:
self.df.loc[i, 'col_ord'] = 'b'
elif row['is_ordered_x'] == 0:
self.df.loc[i, 'col_ord'] = 'r'
else:
if row['is_ordered_x'] <= 0.5 and row['is_ordered_y'] > 0.5:
self.df.loc[i, 'col_ord'] = 'c'
elif row['is_ordered_x'] > 0.5 and row['is_ordered_y'] <= 0.5:
self.df.loc[i, 'col_ord'] = 'm'
else:
self.df.loc[i, 'col_ord'] = 'g'
return self.df, self.descriptor
def coordination(self):
self.descriptor = 'col_coord'
for i, row in self.df.iterrows():
try:
if 2 < row['okeeffe_cn_avg'] < 4:
self.df.loc[i, 'col_coord'] = 'y'
elif 4 <= row['okeeffe_cn_avg'] < 6:
self.df.loc[i, 'col_coord'] = 'g'
elif 6 <= row['okeeffe_cn_avg'] < 8:
self.df.loc[i, 'col_coord'] = 'b'
elif 8 <= row['okeeffe_cn_avg'] < 10:
self.df.loc[i, 'col_coord'] = 'r'
elif 10 <= row['okeeffe_cn_avg'] < 12:
self.df.loc[i, 'col_coord'] = 'c'
else:
self.df.loc[i, 'col_coord'] = 'k'
except KeyError:
self.df.loc[i, 'col_coord'] = 'k'
return self.df, self.descriptor
def analyze_df(prop):
df = pd.read_pickle(prop + '_merged.pkl')
for i, row in df.iterrows():
df.set_value(i, 'sg_diff', row['space_group_h' + prop[-1]] - row['space_group_l' + prop[-1]])
try:
composition = Composition(row['reduced_cell_formula'])
df.set_value(i, 'numden_diff', row['number_density_h' + prop[-1]] - row['number_density_l' + prop[-1]])
df.set_value(i, 'numvol_diff', ((len(composition.get_el_amt_dict()) * composition.weight)/(row['number_density_h' + prop[-1]])) - ((len(composition.get_el_amt_dict()) * composition.weight)/(row['number_density_l' + prop[-1]])))
df.set_value(i, 'den_diff', row['density_h' + prop[-1]] - row['density_l' + prop[-1]])
df.set_value(i, 'vol_diff', (composition.weight/(row['density_h' + prop[-1]])) - (composition.weight/(row['density_l' + prop[-1]])))
except ZeroDivisionError:
pass
df.plot(x='vol_diff', y='sg_diff', kind='scatter')
print df.sort_values('sg_diff').tail(50)
if prop == 'hp':
plt.title('HP')
elif prop == 'ht':
plt.title('HT')
plt.show()
# print df.loc[df['reduced_cell_formula'] == 'Fe']
# print df.loc[(60 < df['space_group_x']) & (df['space_group_x'] < 65)]
# print df.sort_values('number_density_y').dropna().tail(60)
def plot_common_comp():
hp_df = pd.read_pickle('hp_merged.pkl')
ht_df = pd.read_pickle('ht_merged.pkl')
hpht_df = pd.merge(hp_df, ht_df, on='reduced_cell_formula')
for i, row in hpht_df.iterrows():
hpht_df.set_value(i, 'sg_diff_hp', row['space_group_y_x'] - row['space_group_x_x'])
hpht_df.set_value(i, 'sg_diff_ht', row['space_group_y_y'] - row['space_group_x_y'])
# print hpht_df
hpht_df.plot(x='sg_diff_ht', y='sg_diff_hp', kind='scatter')
plt.show()
print hpht_df.sort_values(['sg_diff_ht', 'sg_diff_hp'], ascending=[False, True])
if __name__ == '__main__':
pd.set_option('display.width', 1000)
# create_tagscoll()
'''
x = 0
for doc in db['pauling_file_min_tags'].find().batch_size(75):
x += 1
if x % 1000 == 0:
print x
set_hpht_tags(doc, 350, 450)
# '''
# set_hpht_dataset_tags()
props = ['hp', 'ht']
for name in props:
# cursor = db['pauling_file_min_tags'].find({'is_' + name + '_dataset': True})
# df = pd.DataFrame(list(cursor))
# df_feat = add_features(df)
# df_cn = set_coordination(df_feat)
# df_cn.to_pickle(name + '_cn.pkl')
# grouped_df, merged_df = group_merge_df(name)
# merged_df.to_pickle(name + '_cn_merged.pkl')
# plot_violin(grouped_df, name)
# plot_xy(merged_df, name)
# analyze_df(name)
plot_descs = ['X', 'is_magnetic']
for plot_desc in plot_descs:
df_desc, desc = getattr(AddDescriptor(name), plot_desc)()
plot_xy(df_desc, name, desc)
'''
big_df = pd.read_pickle('pauling_file_tags_ht.pkl')
idxs = big_df.index.tolist()
p = mp.Pool(processes=4)
job_args = [(idx, big_df.ix[idx, 'structure']) for idx in idxs]
pool_results = p.map(get_coordination, job_args)
p.close()
p.join()
for idx_coord in pool_results:
big_df.set_value(idx_coord[0], 'cation_coord', idx_coord[1])
big_df.set_value(idx_coord[0], 'anion_coord', idx_coord[2])
print big_df.describe()
# '''
# plot_common_comp()